Technology
Arts Sciences

TH Koln

07 Fakultét fiir Informations-, Medien- und

Elektrotechnik, Studiengang Technische Informatik

Institut fiir Nachrichtentechnik

Research Project

Arnau Vazquez Giner

Scale, a Matlab Open Source Software Tool for Listening

Experiments

Contents

1 Introduction 1
1.1 What is Scale? 1
1.2 Tests implemented oL 1

1.2.1 Adaptive 1
1.2.2 Double-blind Triple-stimulus with Hidden Reference (ABC-HR) 2
1.23 ABX . . . 3
1.2.4 MUSHRA 3
1.25 SAQI. 5
1.3 Type of stimuli available 5
1.3.1 wav stimuli (WAV)00 o 5
1.3.2 .wav combined with the SSR (BINAURAL_SSR) 5

2 Structure of the program 7
2.1 General 7
2.2 Start ... 9
23 Config 11
2.4 Testing 15
2.5 Analysing 18

3 Procedure Implementation 20
3.1 Configuration process file changes 20

3.1.1 TestTypeEnum, 20
3.1.2 Common_create_test 21
3.1.3 GULConfig 3_TestName 23
3.2 Testing process file changes 25
3.2.1 Common_create_results 25
3.2.2 GULTester_TestName 26
3.3 Analyzing process file changes 33
3.3.1 analysing generate_struct_TestName 33
3.3.2 GUILAnalyse_TestName 34

Bibliography 37

A Appendix A Lo 38

List of Figures

1.1
1.2

1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3-AFC procedure trial window L. 2
Double-blind triple-stimulus with hidden reference procedure trial win-

dow [3] . . o o 3
Scale’s interface during an ABX test 4
Scale’s interface during a MUSHRA test 4
Scale’s interface during a SAQI test 5
System architecture oo 6
Structure of the program L. 8
Structure of the start part L. 9
GUL Start_Intro window 9
GUILStart_main window L. 10
Subject_register windowo 10
Structure of the config part 11
GUILConfig_1 window 12
GUILConfig 2 window 12
GUI_Config_3_TestName window 13
GUIL_Config 4 window 13
GUI_Config_5_StimuliName window 14
GULConfig 6 window 14
Structure of the testing part 15
GUI_Tester_prepare_StimuliName window 16
GUIL Tester_login window 16
GUI_Tester_Scenario_selection 17
GULTester_TestName 17
Structure of the analysis part 18
GULAnalyse_TestName 19
Code snipet of the enumeration file 21
Code snippet of the common test creation code 22
Code snipet of the specific test creation code 22
Code snippet of the stimuli specific test creation code 23
New files created 24
Special configuration window of MUSHRAMOD test 24
Code snippet of the common part of the results creation file 25
Code snippet of the test specific part of the results creation file. 26
Newly created test files 27
Code snippet of the default functions in the Tester window 27

IT

List of Figures

3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

3.19

3.20
3.21
3.22
3.23

GUIDE edition mode of the default test window
GUIDE edition mode of the test window with sliders
Code added to the GUIL_Tester_MUSHRAMOD_OpeningFcn function .
Code added to the GUIL_Tester MUSHRAMOD_OutputFcn function . .
Code corresponding to the slider functions
Code corresponding to the stimuli button functions
Code corresponding to the next button function
Code corresponding to the subject information part of the results struct
creatlono
Code corresponding to the ratings information part of the results struct
creation L
Code corresponding to the completion of the results struct creation

Newly created analysis files
Analyse window in edition mode
Code corresponding to the analysis window modification

III

1 Introduction

1.1 What is Scale?

Scale is a software tool that covers the full chain of setup, conduction and analysis
of psychoacoustic experiments. It offers several testing procedures, the interaction
between researcher or subjects and the software is done via a graphical user interface
(GUI) and does not require any programming skills. Test setups or results can be
easily ported from one instance of the program to another. Thus everything is portable
and exchangeable between different computers and researchers. The first version of
Scale was presented at the DAGA Conference in 2013 in Merano, Italy, and the second
version was presented at the DAGA Conference in 2015 in Niirmberg.

1.2 Tests implemented

The initial version of Scale included a selection of frequently used test procedures like
simple or transformed staircase adaptive procedures and double blind triple-stimulus
with hidden reference (ABC-HR). In the second version three additional procedures,
ABX, MUSHRA and SAQI, are implemented. In the present version, the third version,
no more tests have been included; however, the whole code has been modified in order
to give researchers the possibility of adding new test procedures themselves.

1.2.1 Adaptive

Adaptive procedures aim to find a threshold of detection in the psychometric function of
a determined dimension of a sound. Stimuli are presented and varied in one dimension.
The amount of variation is increased or reduced depending on the preceding subject’s
responses and on the respective adaptation method. In Scale the adaptation is made
using different staircase methods like simple staircase (1up/ldown) on the one hand,
and some transformed staircase methods (1up/2down, 2up/1down) as described in [1]
on the other hand. The threshold estimation can either vary depending on the ending
conditions of the trial (limited number of runs or reversals) or on how the average is
calculated.

1.2 Tests implemented

Which sound (A, B, C) is different from the others?

Figure 1.1: 3-AFC procedure trial window

The tests have to be combined with a paradigm. Scale provides different paradigms
which can be divided into two groups: n-AFC (n alternative forced choice) paradigms
and Yes/No paradigms. In the n-AFC paradigms n intervals (as used in [2]) are pre-
sented to the subject. When n is equal to 2 the subject has to decide in which of the
two intervals a designated signal is present. When n is greater than 2 the subject has to
decide in which of the n intervals the presented stimulus is different. The sample assig-
nation to the intervals of the n-AFC paradigms is always automatically randomised.
When using a Yes/No paradigm only one interval that includes one or more sounds is
presented to the subject. The subject has to decide whether the signal occurs within
the presented interval or not.

1.2.2 Double-blind Triple-stimulus with Hidden Reference
(ABC-HR)

This procedure has become a standard in psychoacoustics and is used to assess small
impairments between sound samples. In every trial, three stimuli are presented in
three intervals ("A”, "B” and "C”). The stimulus in "A” is presented as the known
reference, the stimuli in "B” or "C” are randomly assigned, whereas one of them is
a hidden reference and the other one is a sample which is varied in one determined
dimension. After listening to the stimuli the subject is asked to assess the impairments
between "A” and "B” and "A” and "C” using a rating scale. The rating is performed
with a slider along a continuous scale with anchors. The number of grades in the
scale as well as the text in the labels of every mark can be set. Thus all requirements

to perform the test “Subjective Assessment of Small Impairments in Audio Systems

1.2 Tests implemented

Please answer questions 1 and 2.
To hear again the sounds in A, B or C, click the corresponding button

Once finished click on continue

o e e
o How would you describe the difference between A and B?
|

Imparl:laphble‘ i ; Perl::pm:\e‘ RS ‘Shglmlyl RS Lnnlnylng i !) Ve:y
i How would you describe the difference betwsen A and C?

C
ImDErCIED"DIE i i : Pe';ﬁ‘;w:;\! S ‘SNIHWI gk !knnlnymg i !) VE!Y

Continue
Figure 1.2: Double-blind triple-stimulus with hidden reference procedure trial window

3]

Including Multichannel Sound Systems” described in the recommendations of the I'TU

[3] are met, see Figure 1.2.

1.2.3 ABX

The ABX test is a simplification of the ABC-HR test. In a trial of an ABX test,
a subject is presented with two stimuli which are A and B, followed by a third one
called X. After hearing A, B and X, the subject must select which of the stimuli in the
intervals A or B is the same as in interval X. In this case, as opposite to the ABC-HR,
no rating is done. In Scale, each scenario can contain many trials and for each trial,
the position of the reference stimuli in A and B is randomized. Figure 1.3 shows a trial

window of the test.

1.2.4 MUSHRA

The aim of a multi-stimulus test with hidden reference and anchor (MUSHRA) test [4]
is to rate global differences between several audio stimuli. All stimuli are presented
in a single trial and have to be compared to a given reference. Each stimulus has a
continous scale (continous quality scale) which goes from 0 (bad) to 100 (excellent), as
shown in Figure 1.4. Reference and stimuli can be switched over instantly. The order
of the stimuli is randomized and every trial has to include a hidden reference and an

anchor.

1.2 Tests implemented

scale Sotup, Conducion and Anays of Lo Exprnais

Which sample (A or B) is the same as X?

Calibrate

Figure 1.3: Scale’s interface during an ABX test

Bitte bewerte die Ahnlichkeit von A - E zur Referenz!

Excellent (100%) >>> A - E klingt genau wie die Referenz
Bad (0%) >>> A - E klingt ganz anders als die Referenz

65 100 38 63 85

100

Calibrate
Excelent
80 r
Good
60 r -
Fair
40
Poor [
20
Bad
0

Reference A B c D E

Figure 1.4: Scale’s interface during a MUSHRA test

1.3 Type of stimuli available

1.2.5 SAQI

The spatial audio quality inventory (SAQI) test [5] has been specifically designed for the
perceptual evaluation of virtual acoustic environments. In every trial a reference and a
stimulus are presented together with 48 verbal descriptors of perceptual qualities that
are assumed to be of practical relevance when comparing virtual auditory environments.
Each descriptor comprises a rating scale with a pair of opposed adjectives in its scale
ends. The subject’s task is to compare the stimulus to a given or inner reference and

give a rating for each perceptual quality.

Please rate every slider according to its the definition

Perception of a strong reverberant sound field, caused by a high ratio of reflected to direct sound energy.
Leads to the impression of high diffusivity i case of stationary excitation (in the sense of a low D/R-ratio)

Example: The perceived intensity of reverberation differs significantly between rather small and very large spaces, such as living
rooms and churches.

&

Figure 1.5: Scale’s interface during a SAQI test

1.3 Type of stimuli available

In this version of Scale two different types of stimuli are available. Those are .wav stim-
uli and .wav combined with SSR. Other types of stimuli can be added by modification
of the exsiting code files.

1.3.1 .wav stimuli (WAV)

The .wav stimuli are just audio files in the mentioned format which will be played by
Matlab using the function play of the audioplayer objects.

1.3.2 .wav combined with the SSR (BINAURAL_SSR)

This type of stimuli are obtained by a combination of the rendering software Sound
Scape Renderer (SSR) [6] and the .wav playback function of Matlab. As shown in

1.3 Type of stimuli available

Figure 1.6, Scale processes subject’s inputs and operates the SSR using its network
interface via TCP/IP protocol while the test is performed. The SSR runs in the
background generating stimuli with the combination of the incoming audio signal, the

tracker data and the corresponding head related impulse response (HRIR) or binaural

room impulse response (BRIR) set.

Control computer side

Sound Scape [€-ieeeennns
Renderer

7y r 7
B Routed

Digital |
Audio | | | ===
Signal

Digital

Tracking data

JACK Audio

Connection

Commands

Digital
Audio
Signal

SCALE s

Sound
Interface

User side

Subject input

Analog
Stimulus

SCALE GUI

Figure 1.6: System architecture

2 Structure of the program

This version of Scale has been implemented in order to give the user the possibility to
implement new test procedures. The implementation of a new procedure, however, re-
quires some skills in the Matlab programming language and its graphical user interface
design environment (GUIDE).

Since Matlab is not an object oriented language, writing a software which can be ex-
panded while maintaining a clean code is a difficult task. In object oriented languages,
the programer tries to keep the code as short and efficient as possible and this can be
done by using classes. In the case of Scale, another approach has been taken. Instead
of keeping the code as short and efficient as possible, the code has been expanded with
the idea that a user can make his own changes by adding new code files and modifying
as little as possible the existing source code.

In this section an explanation of Scale’s structure and the files involved in each part of

the program (configuration, testing and analyzing) is given.

2.1 General

Scale can be divided in three main modules which are, from a coding point of view,
independent from each other; those are the configuration module, the testing module
and the analyzing module. The functions needed by each module are placed inside
three different folders in the program folder. A fourth module, which is the start mod-
ule is also included, this module is only in charge of starting the program and the user
do not need to modify it.

Figure 2.1 shows the general structure of the program. Each square is named after
its file name and they correspond to interface windows or to functions (the ones in
cursive). The squares marked in yellow indicate that the files need to be created (if
a new type of test is being implemented) or green (if a new type of stimuli is being
added). The squares in blue indicate that the files need to be modified (some code
added to them).

Following a detailed explanation of the windows and functions related to each part of
the program is presented.

2.1 General

Scale —-D} GUI _Start_intro |—DI GUI _Start_main I ------- »

GUI

_Start_subject_register \

| Common_create_subject |

Config
I GUI 7Conf|g71 |
[GUI _Config_2 |

I GUI _Config_3_TestName

v

| GUI _Config_4

|

GUI _Config_6

Testing

GUI_Tester Iogm

[GUI_Tester_intro |

v

GUI_Tester_Scenario
_selection

]
|

GUI_Tester_TestName |

AnalyzinN

GUI_Analyse_TestName

.

analysing_generate_struct
H _TestName

Figure 2.1: Structure of the program

2.2 Start

2.2 Start

-) GUI
I Scale |—DI GUI _Start_intro |—b| GUI _Start_main I ------- > _Start_subject_register \

| Common_create_subject |

Figure 2.2: Structure of the start part

As depicted in Figure 2.2 the start part contains three windows and a function. After
the program is launched, the GUI_Start_Intro window (Figure 2.3) is shown.

@ln
ity of Applied Sciences

Setup, Conduction and Analysis of Listening Experiments

Release R15-0416

Figure 2.3: GUL_Start_Intro window

This window just presents the animation and calls the next window GUI_Start_main

(Figure 2.4) which presents the three options (configuration, testing and analyzing)

plus the registration of the subject button.

In order to register a subject, the user must click the button and the window GUI_Start_subject_reg
(Figure 2.5) is shown. This window calls the function Common_create_subject

which create the subject information file. From the files presented in this section,

only the file GUI_Start_main needs to be slightly modified; this will be explained in

the test implementation (Section 3).

2.2 Start

Setup, Conduction and Analysis of Listening Experiments

Register subject

Create Perform Analyse

oo
® o o Fachhochschule Koln
© o o Cologne University of Applied Sciences

Cancel Next

Figure 2.4: GUL_Start_main window

Setup, Conduction and Analysis of Listening Experiments

Name (Angela)

Sumame (Merkel)

Bithday 1 4| lnway 5[1980 4
Gender vale 4
Country of birth Germany 3
1) Experience in Psychoacoustic tests ves 4
2) Knowledges about audio processing? oo
3) Do yo play any musical instrument never 4
4) Weekly exposure to loud music (club, congert... oti.. 4
5) Weekly use headphones (hours) o :
Ave they in ear headphones ves 4
7) Do you have known hearing problems o+
8) Other aspects:

* If answer to 7 was yes,
ke a short description

* If answer to 2 was yes,
make a short description

Cancel Next

Figure 2.5: Subject_register window

10

2.3 Config

2.3 Config

e

Config /

GUI _Config_1
GUI _Config_2

v

GUI _Config_3_TestName

v

GUI _Config_4

!

GUI _Config_6

Figure 2.6: Structure of the config part

The config part is related to the configuration of the test. As shown in Figure 2.6 six
windows and one function are involved in the configuration process. The first window
GUIL Config 1 (Figure 2.7) just requests the user to input the name of the procedure,
the type of procedure, the scenarios and the stimuli type. After confirming the desired
options, the Common_create_test function which creates the test information file is
called. Please note that the Common_create_test function will have to be modified
in case of implementing a new type of test.

On a next step, the window GUIL_Config_2 (Figure 2.8) appears. In this window, the
instructions appearing at test start and in each scenario are given; no modification has
to be done here.

The third window to appear is the GUI_Config_3_TestName window where the
special configuration options for each type of test are set. The file containing the code

11

2.3 Config

Setup, Gonduction and Analysis of Listening Experiments

Name example

Test type Adaptive r
Stimuli Type WAV 2
Number of scenarios 4 3
Scenario order default s

Cancel Next

Figure 2.7: GULConfig_1 window

Setup, Conduction and Analysis of Listening Experiments

Instructions on test start
Please write here the instructions that will appear once on the begginning of the test.

Instructions on trial window-
Please write here the instructions that will appear in the trials. You can setthem different for each scenario (4 lines max!)

Scenario
A

Cancel Next

Figure 2.8: GULLConfig_2 window

12

2.3 Config

for this window will have to be newly implemented in case a new test type is being
added (this is explained in Section 3).

O-0-0O O
scale Satup, Conductionand Analys o Lianing Exparinnts

General configuration

Repetitions [
Paradigm WoAFC
Adaptation method oneUp1Down

Please from the panels titled "Procedure specific” fll only the one corresponding to your test procedure

Procedure specific (simple staircase) Procedure specific (QUEST)
Max number of runs 10000 3 1Guess
tGuessSD
Max number of reversals 10000

pThreshold
Activate half step width

stepSize 1
range
nTrials 20
beta 35 deta o1 gamma Calc
Cancel Next

Figure 2.9: GULLConfig_3_TestName window

GUIL Config 4 (Figure 2.10) window acts as a bridge between the test configuration
options and the Stimuli addition window.

scale Sotp, Condusion and Ansys of Litoning Exporments

Please click continue to add the stimuli

Cancel Next

Figure 2.10: GUI_Config_4 window

The stimuli addition window GUI_Config_5_StimuliName (Figure 2.11) will have
to be newly implemented in case a new type of Stimuli is added. For the moment it is
implemented for using .wav stimuli and .wav + SSR binaural renderer stimuli.

The last window of the test configuration part, window GUI_Config 6 (Figure 2.12)
which just asks the user to click the confirmation button to finish the test setting.

13

2.3 Config

scale St ondusion a0 Anayes of Laning Exprinens

Available Samples Samples
1| unused
2| unused
add
Scenario

]

Erase last slot Add new slot

Cancel Next

Figure 2.11: GUI_Config_5_StimuliName window

scale ot Condcton and Al Ltning Esprnais

Please click continue to complete the creation of the test.

Cancel Next

Figure 2.12: GUI_Config_6 window

14

2.4 Testing

2.4 Testing

Testing

GUI_Tester_login

| e

GUI_Tester_intro

v

GUI_Tester_Scenario
_selection

{ !

GUI_Tester_TestName

Figure 2.13: Structure of the testing part

The testing part is in charge of the actions happening during test performance. The

first window to appear is the GUI_Tester_prepare_StimuliName (Figure 2.14). Ba-

sically this window acts as a bridge after the launch of Scale and the start of a test in

case something needs to be loaded or started, for example the SSR.

If nothing needs to be done, the user will just press continue (this file needs to be
implemented in case a new type of stimuli is added). The next window to appear is

the login window called GUI_Tester_login (Figure 2.15) where the subject logs in.

After the login is done, the scenario selection window, called GUI_Tester_Scenario_selection
(Figure 2.16) opens. This window is where the subject sees the next scenario that he

is going to perform.

After clicking the next button, a script with the name Tester_Load_Scenario_StimuliName
is called. This script needs to be implemented in case a new type of stimuli is used and

15

2.4 Testing

X-B - Setp, Condueion and Anays of Litenng Expermans

SSR connection
Tracker type:

¥ SSRvisible

connect SSRON

Cancel Next

Figure 2.14: GUI_Tester_prepare_StimuliName window

scale R ——

Login
Fill the following fields and click login
Name Example Birthday: | january : 1920 3

Surname Man|

Login

Cancel Next

Figure 2.15: GUI_Tester_login window

16

2.4 Testing

scale Sotup,CondusionandAnas of Ltonng Exporrnis

Those buttons represent the different scenarios that you have to complete in order to finish this test.
If you have already completed any of the scenarios in the button will appear the word "Completed". When a button appears
in colour green means that this will be the next Scenario to complete.

Please just click "Next" to start the following scenario and click "Finish" when all scenarios are completed.

If you need to stop the test, please click the button "Interrupt"

=

Intemupt Next

Figure 2.16: GUI_Tester_Scenario_selection

its purpose is to prepare the scenario in case something needs to be done, for example
load a scenario of the SSR.

Finally, after the selection of the scenario and the preparation of the resources needed,
the test window, with the name GUI_Tester_TestName (Figure 2.17) opens. This is
where the action takes place, here the subject will interact during the test. This window
needs to be implemented for each type of test and this is explained in Section 3.

scale o, Conusion s s of tning Bpotens

Setthe sliders to the desired positions in relationship to the reference
Set the sliders to the desired positions in relationship to the reference
Setthe sliders to the desired positions in relationship to the reference

100 75 80 100 100 100
100 Calibrate

Excelent
80

Good
60

Fair
40

Poor
20

Bad
0

[rome] [+] =] I =] [=] [F]
Figure 2.17: GUI_Tester_TestName

17

2.5 Analysing

2.5 Analysing

N

AnalyzinN

GUI_Analyse_TestName

b

analysing_generate_struct
: _TestName :

Figure 2.18: Structure of the analysis part

The analysing part is in charge of the analysis of the test results. Results can be
visualized graphically on the same Scale interface or exported to an external .mat file
in order to process them as the researcher desires. Only one window and one script
are responsible for this process; however, the window and the script must be newly
implemented for each kind of test. The reason for that is that each test has different
type of results. On the one hand, in a test like MUSHRA, several values are obtained
in a single trial or scenario and those values are "independent” from each other. On
the other hand in a test such as a 2AFC, a value for each trial is obtained, since the
responses of the subject are aimed to obtain a single average value, in this case a
threshold.

Figure 2.19 is an example of the window GUI_Analyse_TestName which varies
depending on the type of test. The script analysing_generate_struct_TestName

18

2.5 Analysing

o WeoWeyg Zoom In

Scale Setup, Conducton and Analsis o Listning Experiments
Results average abc hr Scen Scen2
Avaiabie

+ - || selectar |
[ceanan |
$0100100 pum—

‘AVa10862841448abc mat

2.0f 2 results selected

Scenario

] |

Select All Options
Aver.
Save Data
alldata

plot

Cancel Refresh

Figure 2.19: GUIL_Analyse_TestName

is responsible of exporting the test data. This script, has to be newly implemented for

each new type of test and this is explained in Section 3

19

3 Procedure Implementation

This chapter explains the implementation of a new type of test procedure. All the
script, window or function files which have to be modified are explained step by
step together with code examples. The test type to be implemented will be called
MUSHRAMOD. The procedure is similar to a MUSHRA. In each trial some samples
will be presented, each of them together with a slider. The user can listen to a sample
by clicking on the button linked to it or by moving the slider above. The sliders will
be positioned vertically and a scale will be attached to it. The subject will then give
their ratings positioning the slider tip in a certain position. The difference between
each stimuli will be the set of binaural impulse responses used to filter a noise .wav

sample which will be played as a loop during all the trial.

3.1 Configuration process file changes

In this part, two files have to be modified and one file need to be created. Those files
are:

1. TestTypeEnum
2. Common_create_test

3. GUIL_Config_3_TestName

3.1.1 TestTypeEnum

The file TestTypeEnum defines an enumeration for the different type of existing tests.
This is used during many parts of the program execution since having the test proce-
dures defined in an enumeration reduces the amount of files to be modified when imple-
menting a new procedure. The file is found in Scale/Scale_code_files/classes/Test Type Enum.
In this file only the name of the procedure has to be included in the list of the exist-

ing tests. Figure 3.1 shows the code snippet where the test procedure name has been
placed (highlighted in red).

20

3.1 Configuration process file changes

classdef TestTypeEnum
enumeration
Adaptive
ABC_HR
ABX
MUSHRA
SAQT
MUSHRAMOD
end
end

Figure 3.1: Code snipet of the enumeration file

3.1.2 Common_create_test

The file Common_create_test creates the test file. This file contains the information re-
lated to the test itself. Some information is common for all type of procedures, for exam-
ple the number of scenarios, the creation date, the type of procedure, the type of sam-
ples used, etc. Other information is specific from the procedure or the sample type. The
file is found in Scale/Scale_code_files/functions/Common_create_test The test informa-
tion is saved in a struct called test_info, which is saved inside Scale/Scale_user_files /tests/
nameOfYourTest/test_info. The fields of the test information struct are the following:

e test_info.testName: name of the test.

e test_info.test Type: type of procedure, value of the enumeration test Type (MUSHRA,
ABX...).

e test_info.stimuliType: type of stimuli, value of the enumeration stimulitype (WAV,
BINAURAL_SSR...).

e test_info.totalScenarios: number of scenarios.

e test_info.scenarioOrder: order of the scenarios (default or random).
e test_info.instructStart Window: instructions of the test.

e test_info.instructTrial Window: instructions of the trial.

e test_info.creationDate: creation date.

e test_info.creationCompleted: boolean, indicates if the creation of the test is com-
pleted.

e test_info.TestName: this field is a struct which contains the specific information
of the test procedure. This is explained after this list.

21

3.1 Configuration process file changes

e test_info.stimuli: this struct contains info related to the stimuli and its composi-

tion depends on the stimuli type used.

e test_info.SSR_Config: this struct contains information related to the use of the

SSR like the connection id, the tracker type, etc.

The common part is created as shown in Figure 3.2, this part do not need to be modified

and it is automatically filled.

function test_info = Common_create_test(testName,testType,stimuliType,totalScenarios,scenario(
%%those are the fields of the test_info struct, common for all type of

%%¥tests

test_info.
test_info.
test_info.
test_info.
test_info.
test_info.
test_info.
test_info.
test_info.

testName=testName;

testType=testType;

stimuliType=stimuliType;
totalScenarios=totalScenarios;
scenarioOrder=scenarioOrder;
instructStartWindow='";
instructTrialWindow=cell(1l,totalScenarios);
creationDate=date;

creationCompleted=0;

$%those are the fields of the test_info struct, special for each type of
$%test, this info is saved in a substruct like
%%test_info.<type_of_test>.... (exeample: test_info.adaptive.paradigm (paradigm parameter foi

switch test_info.testType
case TestTypeEnum.Adaptive %%case adaptive test
test_info.adaptive.paradigm=ParadigmEnum.twoAFC; %%default

Figure 3.2: Code snippet of the common test creation code

The test specific part, has to be implemented by the user, as a new case in an existing

switch clause. In the case of our new test, no modifications have to be done to it, since

the only information needed by the test, are the number of stimuli in each trial, and

this is given in the test_info.stimuli struct. Figure 3.3 shows the code snippet of this

part where an empty case condition is placed with the name of the test procedure. In

case we would like to add something in the struct, we would write test_info. <name of

our test procedure>.(field). (See the SAQI case clause as an example in the snippet).

case TestTypeEnum.ABX %%case ABX test

case TestTypeEnum.MUSHRA %%case MUSHRA

case TestTypeEnum.SAQI %%case SAQUI
test_info.SAQI.language=LanguageEnum.english; %%by default english

test

info.SAQI.selectedQualities=zeros(1,48);

test_info.SAQI.referenceType='external'; %%by default external
test_info.SAQI.sliderSteps=3;%%by default 3

case TestTypeEnum.MUSHRAMOD %%case MUSHRAMOD |

end

Figure 3.3: Code snipet of the specific test creation code

The third part of the code file includes the struct inside test_info related to the stimuli.

This struct will be later filled with the number of stimuli for each scenario, the names

of the .wav samples and the filter numbers in case of using the SSR. For the creation

of a new procedure, this part do not need to be modified. The code snippet presented

in Figure 3.4 presents this last part of the code.

22

3.1 Configuration process file changes

$%those are fields of a substruct inside the test_info struct regarding
$%the type of stimiuli used test_info.<name_of_ the_stimuli_type>.....
switch test_info.stimuliType
case StimuliTypeEnum.WAV
test_info.stimuli(totalScenarios).wavList=cell(1l,1);
test_info.stimuli(totalScenarios).nStimuli=zeros(1,1);
case StimuliTypeEnum.Binaural_ SSR
test_info.stimuli(totalScenarios).wavList=cell(1l,1);
test_info.stimuli(totalScenarios).BRIRList=zeros(1,1);
test_info.stimuli(totalScenarios).asdFileName="'";
test_info.stimuli(totalScenarios).nStimuli=zeros(1,1);
test_info.SSR_config.trackerType='";
test_info.SSR_config.sampleRate='";
test_info.SSR_config.renderType='brs';
test_info.SSR_config.connectionIdx=0;
test_info.SSR_config.cardId=0;
end

Figure 3.4: Code snippet of the stimuli specific test creation code

3.1.3 GUI_Config_3_TestName

The file GUIL_Config_3_TestName corresponds to the code of a window that appears
during the configuration process. This window corresponds to the setting of the special
parameters of the test procedure. In the case of our new test, no parameters need to
be added so we don’t really need it, however the window has to be implemented. The

way of doing this is the following:

1. Open Matlab
2. Set the working directory to your_path_to_scale/Scale/Scale_code_files/config

3. Type in the command prompt guide GUL Config-3-DUMMY (the call to the file
has to be like this, be sure you do not call the file plus .m or .fig) and press enter.
Wait for the figure window to open.

4. Having the window open, click on file and then save and save the figure as
GUIL Config_3_TestName (TestName refers to the name of the procedure, in this
case it has been saved as GUL Config-3_-MUSHRAMOD).

5. Close the figure window.

6. If everything was done right, now two new files should have been created named
GULConfig-3_TestName.fig and GUIL_Config_3_TestName.m. Those files refer to
the figure file and the code file respectively. (Figure 3.5)

Now we have already the window where we can configure the options special to the new
created procedure. As explained before, no special configuration has to be done in our
MUSHRAMOD procedure, so no modification needs to be done in the file. The dummy
file, just presents a window which says "Please click next to add the samples” and after
the user clicks on next, the sample window will be opened. When the window is opened,
the test_info struct is loaded and temporally saved inside the handles variable. In case

23

3.1 Configuration process file changes

* | GUI_Config_3_Adaptive.fig
GUI_Config_3_Adaptive.m

“ GUI_Config_3_DUMMY.fig
GUI_Config_3_DUMMY.m

“1 GUI_Config_3_MUSHRA fig
GUI_Config_3_MUSHRA.m

*] GUI_Config_3_MUSHRAMOD.fig
GUI_Config_3_MUSHRAMOD.m*

* | GUI_Config_3_SAQl.fig
GUI_Config_3_SAQl.m

Figure 3.5: New files created

special options for the test are needed, we could add input fields that the user can
interact with. The information then would need to be saved during the process as
handles.test_info. TestName.field=zxx. When the user press next, the test_info struct
is passed to the next window.

Figure 3.6 shows how the window will look like in the case of the test which is being
created.

No extra parameters have to be configured in this test. Please click continue

Figure 3.6: Special configuration window of MUSHRAMOD test

Please note that handles is in itself a struct where information can be saved during the
execution of an interface window and the information contained in this struct can be
accessed by all the functions in the window. It is like a global variable. If we would not
load the test_info struct inside the handles struct, we could not acces it and modify
it from all functions inside the window.

24

3.2 Testing process file changes

3.2 Testing process file changes

For this part one file has to be modified and one file has to be created. The files are
the following:

1. Common_create_results

2. GUIL Tester_TestName

3.2.1 Common_create_results

The first file is the Common_create_results file found in your_path_to_scale/Scale_code_
files/functions/Common_create_results. This file implements the function responsi-
ble of the creation of the results file for a determined test of a determined subject.
The function will be called after the subject performs the login and the results file
created will be automatically named as: first two letters of the subject name/first
two letters of the subject surname/birth month of the subject/birth year of the sub-
ject/hour of creation/first three letters of the test name/.mat and will be saved in
your_path_to_scale/Scale_user_folder/name_of_the_test /results.

The function can be divided in two parts, the first part is common for all tests and
is responsible of creating the fields such as the date of the experiment, the vector
indicating if scenarios are completed, etc. Figure 3.7 shows the snippet of code where
this is happening.

function results_info = Common_create_results(test_info,subject_info)
$%those are the fields of the results_info struct, common for all type of
%%tests

time=clock();
month=num2str(time(2)
day=num2str(time(3));
hour=num2str(time(4))
minute=num2str(time(5

)i

i

))i

results_info.resultsCode=[subject_info.Code day month hour minute test_info.testName(1l:3)];
results_info.testName=test_info.testName;

results_info.subjectCode=subject_info.Code;

results_info.date=date;

results_info.completedScenarios=zeros(1l,test_info.totalScenarios);
results_info.completedTest=0;

if (test_info.scenarioOrder==ScenarioOrderEnum.default)
results_info.scenariosOrder=1:test_info.totalScenarios;
elseif(test_info.scenarioOrder==ScenarioOrderEnum.random)
results_info.scenariosOrder=randperm(l:test_info.totalScenarios);
end

$%those are the fields of the results struct, special for each type of

lm mmemma 2

00k mmi Llia fafa IR MR T

Figure 3.7: Code snippet of the common part of the results creation file

The second part of the function consists of a switch clause where for each test, a new
case statement must be added. In our case, we have added a statement called case
Test TypeEnum.MUSHRAMOD. Inside the case statement, a new struct is created
inside the results_info struct with the name of the test, in this case MUSHRAMOD.

25

3.2 Testing process file changes

During the test, Scale will save the results inside the struct MUSHRAMOD. The struct
contains at the same time a vector of structs called scenario (there are as many values as
scenarios) which will contain the ratings given by the user and the presentation order of
the sliders which will be randomized at this point. The ratings will be saved specifically
in the sampleRating vector (which have a length equal to the number of stimuli in the
scenario) while the presentation order will be saved in the presentationOrder vector
which also have a length equal to the number of stimuli. The function randperm() is
used here to randomize the values. This might be a little bit confusing to understand
by words, so Figure 3.8 shows the snippet of code where all this happens.

case TestTypeEnum.MUSHRA %%case MUSHRA
for scenarioldx=1:test_info.totalScenarios
results_info.MUSHRA.scenario(scenarioldx).sampleRating=zeros(1l,test_info.stimuli(scenarioIdx).nStimuli);
results_info.MUSHRA.scenario(scenarioldx).presentationOrder=randperm(test_info.stimuli(scenarioIdx).nStimuli);
end

case TestTypeEnum.SAQI %%case SAQUI

for scenarioldx=1l:test_info.totalScenarios
results_info.SAQI.scenario(scenarioldx).qualitiesRating=zeros(1,48);
end

case TestType.Enum.MUSHRAMOD %%case MUSHRAMOD
for scenarioldx=1l:test_info.totalScenarios
results_info.MUSHRA.scenario(scenarioldx).sampleRating=zeros(1l,test_info.stimuli(scenarioIdx).nStimuli);
results_info.MUSHRA.scenario(scenarioldx).presentationOrder=randperm(test_info.stimuli(scenarioIdx).nStimuli);
end

end

Figure 3.8: Code snippet of the test specific part of the results creation file

3.2.2 GUL_Tester_TestName

This file is responsible for the code of the trial window. Since tests can be very different
from each other, a new file has to be implemented for each new test. This part will
require medium-high programming skills in Matlab and specially GUIDE. The first
steps to follow are listed below:

1. Open Matlab
2. Set the working directory to your_path_to_scale/Scale/Scale_code_files/tester

3. Type in the command prompt guide GUIL_Tester_ DUMMY (the call to the file
has to be like this, be sure you do not call the file plus .m or .fig). Press enter
and wait for the figure window to open.

4. Having the window open, click on file and then on save and save the figure as
GUL Tester_TestName (TestName refers to the name of the procedure, in this
case has been saved as GUL TesterrMUSHRAMOD).

5. Close the figure window.

26

3.2 Testing process file changes

6. If everything was done right, now two new files should have been created named
GUL Tester_TestName.fig and GUI_Tester_TestName.m. Those files refer to the
figure file and the code file respectively (see Figure 3.9).

A LV S O A LLI IR T

*| GUI_Tester_MUSHRA fig
1 GUI Tester MUSHRA.m

“] GUI_Tester_MUSHRAMOD.fig

] GUI_Tester_MUSHRAMOD.m

| GUI_Tester_prepare_Binaural_SSR.fig
] GUI_Tester_prepare_Binaural_SSR.m

Figure 3.9: Newly created test files

function varargout = GUI_Tester_ DUMMY(varargin)
% End initialization code - DO NOT EDIT

% -—- Executes just before GUI_Tester_ DUMMY is made visible.
function GUI_Tester_ DUMMY_ OpeningFcn(hObject, eventdata, handles, varargin)

% --- Outputs from this function are returned to the command line.
function varargout = GUI_Tester DUMMY_OutputFcn(hObject, eventdata, handles)

function next_but_Callback(hObject, eventdata, handles)
function GUJI_Tester DUMMY_CloseRequestFcn(hObject, eventdata, handles)

function calibrate_Callback(hObject, eventdata, handles)

Figure 3.10: Code snippet of the default functions in the Tester window

Once those steps are performed we are ready to start modifying the file. The DUMMY
file we start with, has some already some code written in it. Figure 3.10 shows a
snippet of code of the functions that are already implemented. Those functions are the
opening function, the closing function, the output function, the calibrate button click
function and the next button click function. The code which have been written inside
of them should not be deleted, however, if necessary might be expanded.

In GUIDE, when a window is opened, the function Opening is automatically called.
In the Opening function, the actions which take place before the window opens have
to be written. Those actions can, be for example, loading the results file in a variable,
loading the logo images, write the instructions in the instructions field, etc.... The next
function to be automatically called is the output function which is called right after
the window appears. The nezt button click function is the function that will be called
when the user has finished the trial, the code in it orders Scale to close the window and
set the variable scenario completed on the results file to true. The Calibrate button
function and the Close function will calibrate the tracker (when using the SSR) and
close the scenario test respectively. Both of them do not require any modification.
Now we can start the tuning of the test window. For this, we will open the figure
with GUIDE typing in the command prompt guide GUIL Tester- MUSHRAMOD (for
our test MUSHRAMOD). The figure that will appear will look like Figure 3.11. It is

27

3.2 Testing process file changes

Calibrate

Figure 3.11: GUIDE edition mode of the default test window

nearly an empty window. From here on, the explanation will be directly based on the
MUSHRAMOD test, since each test type has different layouts, presentation of stimuli
or evaluation methods.

Since the MUSHRAMOD test has for each stimuli, a button, a slider and some y axis
labels, we will create panels and inside each panel we will place those items. At this
point the number of stimuli is not known, but since it should not be greater than 15,
we will create 15 panels, please note that the panels which will be not needed will be
just left invisible when the test is loaded. The buttons corresponding to each stimuli
will be named alphabetically from A to O. To add the panels, buttons, ticks, etc, we
will use the GUIDE editor. At this step we will also place the ratings (very far, far,
close...) at the left part of the window.

Now the window looks like in Figure 3.12. In GUIDFE every object or element in a
window has a name (tag). The panels has been named as Slider_pan_(number from
1 to 15), the sliders has been named as slider—(number from 1 to 15) and the stimuli
buttons play_(number from 1 to 15). The ticks on the y axis next to each slider are
each a text field with the symbol -. They do not need to have a special name and have
been added one by one. Once this is done, we need to click the save button on the
guide window. It will take some time to process, and once it is done, GUIDFE itself
will have created for us all the callback functions (functions that are called when the
element is clicked) of the buttons and the sliders. Those functions will be in the code
file of the window and will be empty so we will have to fill them. Please note that
the option wisible of the slider panels has to be set as off. The option is accessed by
clicking on the element in the GUIDE editor.

28

3.2 Testing process file changes

‘Setup, Conduction and Analys's of Listening Experiments

very distant b | y - - - - - - N N - . N N Calibrate
distant

rather distant

medium

rather close

close

very close

A B C D E F G H I J K L M N o

Figure 3.12: GUIDE edition mode of the test window with sliders

Once the modifications of the window are done and the functions corresponding to the
buttons and sliders have been created we can start modifying the code. At this point

we will go function by function.

GUI_Tester MUSHRAMOD_OpeningFcn

In this function we will add the code necessary to turn visible the sliders needed. The
code has to be added right at the end of the already written code. See Figure 3.13 to
see the snippet of code of this part.

$%%show the scenario number in the upper-right corner
set(handles.scenario_num_txt, 'visible','on');
set(handles.scenario_num_txt, 'string’',num2str(handles.actualScenario));

guidata(hObject,handles);

$%%make visible the needed question panels

for sliderIdx=1:handles.test_info.stimuli(handles.actualScenario).nStimuli
set(eval(['handles.Slider_pan_ ' num2str(sliderIdx)]),'visible','on');

end

pause(0.1);

Figure 3.13: Code added to the GUI_Tester_MUSHRAMOD_OpeningFcn function

GUI_Tester MUSHRAMOD_OutputFcn

This function will be called right after the test starts, since we want that the first
sample starts playing automatically we will add the code necessary to activate stimuli
placed in position 1. The type of stimuli used is not decided yet, for this reason, the
implementation is done for both cases of existing stimuli types: WAV and BINAU-
RAL_SSR.

29

3.2 Testing process file changes

In the case of normal WAV we will just call the button 1 function as if the user clicked
on stimuli in A. For the case of the BINAURAL, we have to start playing the .wav
sample in a loop that will not be stopped until the trial is finished, so we do it here.
Once the .wav sample is playing, we create a vector which will be used to keep track of
the sources that are active and which ones are not. This vector is called active_sources
and will be saved in the handles variable to be accessed from other functions. Each
time a button is pressed, the vector is checked and the SSR closes all sources that
are marked as active inside it. After that, the vector is set to zero, the new source is
activated on the SSR and the position in the vector of the new source is set to 1. This

part of the code can be seen in Figure 3.14.

function yarargout = GUI_Tester MUSHRAMOD_OutputFcn(hObject, eventdata, handles)
global Sample;

$3%center window and hide loading panel
Common_position_window('defined',handles);

Common_loading_panel('off',handles);

switch handles.test_info.stimuliType
case StimuliTypeEnum.WAV
play 1 Callback(handles.play 1, eventdata, handles);

case StimuliTypeEnum.Binaural SSR
$%%start playing the .wav sample looped
[Y,FS, NBITS]=wavread(fullfile('Scale user folder', 'tests',handles.test_info.testName, handles.test_info.stimuli(handles.actualScenario).wavList{1}));
Sample=audioplayer(Y,FS,NBITS,handles.test_info.SSR_config.cardId);
Sample.StopFcn={@wavSampleLoop, Sample};
play(Sample);

t8%retrieve scen information from the .asd file
[scene, finished]=SSR_scene_parser (handles.test_info.stimuli(handles.actualScenario).asdFileName,fullfile('Scale user folder', 'tests' handles.test info.testName));
while(finished==0)
pause(0.01);
end
handles.active_sources=zeros(l,scene.total_sources);
handles.active sources(1)=1;
guidata(hObject,handles);

play_1_Callback(handles.play_l, eventdata, handles)

end
guidata(hObject,handles);

Figure 3.14: Code added to the GUL_Testerr MUSHRAMOD_OutputFcn function

slider_(number of slider)_Callback

This function corresponds to the callback of each slider, this means the action that
takes place when a slider is clicked. Basically the only think that happens is that the
if the stimuli corresponding to the slider was not playing, it should be activated, if it
was already playing we do not make nothing. The rating that the user gives, will be
saved later in the moment when the scenario is closed.

*Please mote that in GUIDE when the code to perform is very similar we can call
a function inside another function. For erxample, the code of the slider action can
be written only once on the slider_1_Callback and in the other sliders, we call this
function. This is shown in Figure 3.15 highlighted in green.

play_(number of button)_Callback

This function corresponds to the callback of each stimuli button. When a button is
clicked two different things can happen. If the button was active, it has to be turned
off and the playback stopped. If the button was not active, it should be activated and

30

3.2 Testing process file changes

function slider_I_callback(hObject, eventdata, handles)
name=get (hObject, 'tag'); %%get the tag name of the slider element
sliderClicked=str2num(name(8:end)); %3get the number of the slider extracting it from it's name

%%%If the stimuli corresponding to the slider is not already playing, make
%%%it play, this is checked evaluationg the color of the button
col=get(eval(['handles.play ' num2str(sliderClicked)]),'backgroundColor'); %%get the color of the button under the slider
green=[0 1 0];
if col~=green %%if the button is not green (not playing) call the button clicked function|
eval(['play ' num2str(sliderClicked) ' Callback(handles.play ' num2str(sliderClicked) ', eventdata, handles)']);
end

function slider_2_Callback(hObject, eventdata, handles)
llback(hObject, eventdata, handles)
slider_3_Callback(hObject, eventdata, handles)
slider 1 Callback(hObject, eventdata, handles)
function slider 4 Callback(hObject, ev a, handles)

Figure 3.15: Code corresponding to the slider functions

the stimuli played. To know which stimuli corresponds to the button, the presentation
order is checked. This first part can be seen in Figure 3.16 inside the red square.

The rest of the code corresponds to the playback of the stimulus. Since there are two
type of stimuli implemented, we implement this two times.

In the first case, for a WAV type stimulus, we load the .wawv file, stop the playback of
the previous one, create a new audio object and start playing it. The code can be seen
in Figure 3.16 inside the blue frame. For the BINAURAL_SSR stimuli type, since the
.wav file is already playing and do not need to be changed we just activate the source
in the SSR that corresponds to the stimulus and we turn off any other source that was
active. This can be seen in Figure 3.16 inside the green frame.

*Please note that in quide when the code to perform is very similar we can call a func-
tion inside another function. For example, the code of the button action can be written
only once on the play_1_Callback and in the other buttons, we call this function. This
1s the same as presented in Figure 3.15 highlighted in green.

function play 1 Callback(hObject, eventdata, handles)
BTobal Sampae

$%%set all buttons to grey
set(handles.play_ ref, 'backgroundColor',[0.941 0.941 0.941]);
for butIdx=1:15
set(eval(['handles.play ' num2str(butldx)]),'backgroundColor',[0.941 0.941 0.941]);
end

$%%set clicked button to green
name=get (hObject, 'tag');
set(eval(['handles.play ' name(6:end)]), 'backgroundColor',[0 1 0]);

%%%check the stimuli to be played looking the presentation vector
stimuliIdx=handles.results_info.MUSHRA.scenario(handles.actualScenario).presentationOrder (str2num(name(6:end)));

T TIMOW PrOCEEY To pIay the STImuTtCorT Ty tothetype O STimurt
$%%selected

switch handles.test_info.stimuliType

| case StimuliTypeEnum.WAV

%%%read the sample information
fileName=fullfile('Scale_user folder', 'tests', handles.test_info.testName, handles.test_info.stimuli(handles.actualScenario).wavList{stimuliIdx}) i
[Y,FS, NBITS]=wavread(fileName);
%%%if there was a sample playing stop the loop and stop the sample
if ~isempty(Sample)
Sample.StopFcn={@wavSampleStop,Sample};
stop(Sample);
end
$%%prepare the new sample and play it
sample=audioplayer (Y,FS,NBITS);
play(Sample);
Sample.StopFcn={@wavSampleLoop, Sample};

case StimuliTypeEnum.Binaural_SSR

asdSourceIdx=handles.test_info.stimuli(handles.actualScenario).BRIRList(stimuliIdx); %%%get the asd source idx
sendCommandSSR('set source sound',asdSourceldx,handles.test_info.SSR_config.connectionIdx); %%%activate the source
active=find(handles.active_sources==1);
for activeSourcesIdx=1:length(active) %%%mute all the sources that were active

if asdSourceIdx~=active(activeSourcesIdx)

sendCommandSSR('set source mute',active(activeSourcesIdx),handles.test_info.SSR_config.connectionIdx);

end
end
handles.active_sources(l:end)=0; %%%save the information of the active source
handles.active_sources(asdSourceldx)=1;

end
guidata(hObject,handles);

Figure 3.16: Code corresponding to the stimuli button functions

31

3.2 Testing process file changes

next_but_Callback

This function is activated when the user clicks the next button indicating that he has
finished the trial. Most of the code for this function do not need to be written since it
is the same for all type of test procedures. This common part corresponds to the stop
of the playback in case a sample was sounding, the saving of the results file, the closing
of the window and the opening of the scenario selection window.

The part that has to be implemented is the saving of the ratings which we will code

before the existing code, as shown in snippet 3.17 framed in red.

function next_but_Callback(hObject, eventdata, handles)
global Sample

for sliderIdx=1:handles.test_info.stimuli(handles.actualScenario).nStimuli(handles.actualScenario)
stimuliIdx=handles.results_info.MUSHRAMOD.scenario(handles.actualScenario).presentationOrder(sliderIdx);
handles.results_info.MUSHRA.scenario(handles.actualScenario).sampleRating(stimuliIdx)=round(get(eval(['handles.slider ' num2str(sliderIdx)])
end

switch handles.test_info.stimuliType
case StimuliTypeEnum.WAV
if ~isempty(Sample) %%%stop the wav sample
Sample.StopFcn={@wavSampleStop,Sample};
stop(Sample);
end
case StimuliTypeEnum.Binaural_ SSR
if ~isempty(Sample) %%%stop the wav sample
Sample.StopFcn={@wavSampleStop,Sample};
stop(Sample);
end
sendCommandSSR('clear scene',0,handles.test_info.SSR_config.connectionlIdx); %%%clear the loaded scene
end

$%%set the scenario completed flag and save the results info
handles.results_info.completedScenarios(handles.actualScenario)=1;

guidata(hObject,handles);

results_info=handles.results_info;

save(fullfile('Scale user folder', 'tests', handles.test_info.testName, 'results', handles.results_code), 'results info');

%%%close scenario and open scneario selection window

pause(0.1);

delete(eval (handles.fig_name));

pause(0.2);
GUI_Tester_scenario_selection(handles.test_name,handles.results_code);
return;

Figure 3.17: Code corresponding to the next button function

As seen in the snippet, to save the rating, we go slider by slider checking the value
and using the presentation order vector we match each position with the real stimuli
positions. This means that if slider number 1 played stimulus number 4, in position 4
of the sample rating vector the value of slider 1 will be saved.

32

3.3 Analyzing process file changes

3.3 Analyzing process file changes
For this part two new files have to be created

1. analysing_generate_struct_TestName

2. GUI_Analyse_TestName

3.3.1 analysing_generate_struct_TestName

This file corresponds to a script which is called during the analysis process in or-
der to export and combine the ratings of the selected subjects and some informa-
tion about them. The script is found in your_path_to_scale/Scale_code_files/analysing/
analysing_generate_struct_DUMMY. The first thing to do is open the script code in
Matlab and save it as analysing_generate_struct_TestName. In our case it will be saved
as analysing_generate_struct MUSHRAMOD.

Once we have our own file, we can start the code modification. The first part of the
script is a for loop repeated once for each result file. Inside the loop, two parts can be
distinguished.

The first one is dedicated to save the subject information such as age, gender or expe-
rience. This is shown in Figure 3.18 and this part does not need any modification.
The second part is dedicated to save the ratings (Figure 3.19 red frame) and this part
needs to be implemented for each type of test.

$%%check if the results file correspond to someone, if not skip them
existSubject=1;
try load(fullfile('sScale user folder', 'subjects',subjectID{resIdx,1}))
catch errorL
end
if exist('errorL')
if strcmp(errorL.identifier, 'MATLAB:load:couldNotReadFile')
existSubject=0;
end
end

$%%if they correspond add age, gender, and others...

if existSubject
Surname{resIdx,l}=subject_info.Surname;
Name{resIdx,l}=subject_info.Name;
Gender{resIdx,l}=subject_info.Gender;
date_today=date;
year_now=str2double(date_today(end-3:end));
Age(reslIdx,l)=year_ now-subject_info.B_year;
Country{resIdx,l}=subject_info.Country;
Experience{resIdx,l}=subject_info.Experience;
Audio_Knowledge{resIdx,l}=subject_info.Audio_Knowledge;
Hearing_Problems{resIdx,l}=subject_info.Hearing problems;

else
Surname{resIdx,1l}="unknown';
Name{resIdx,1l}='unknown';
Gender{resIdx,1l}="unknown';
date_today=date;
year_now=str2double(date_today(end-3:end));
Age(resIdx,1l)=NaN;
Country{resIdx,l}="unknown';
Experience{resIdx,l}='no’;
Audio_Knowledge{resIdx,1l}='no’;
Hearing_Problems{resIdx,1}='no';

end

Figure 3.18: Code corresponding to the subject information part of the results struct
creation

33

3.3 Analyzing process file changes

Audio_Knowledge{resIdx,1l}="no’;
Hearing_Problems{resIdx,l}='no’;
end

%%if subject did the scenario add the data, if not, add NANs
for scenIdx=1l:handles.test_info.totalScenarios
if results_info.completedScenarios(scenIdx)

eval(['Scen' num2str(scenIdx) '(' num2str(resIdx) ',:)=results_info.MUSHRA.scenario(' num2str(scenldx) ').sampleRating;'])
else
eval(['Scen' num2str(scenIdx) '(' num2str(resIdx) ',l:handles.test info.stimuli(' num2str(scenldx) ').nStimuli)=NaN;'])
end
end

e

Figure 3.19: Code corresponding to the ratings information part of the results struct
creation

Once the for loop is completed only two things remain. The first one is to get the
maximum length of the results vector. Since different trials can have different number
of stimuli, we want to get the one with the maximum length for plotting purposes later
in the plotting window. This can be done as represented in Figure 3.20 inside the red
frame. This part of code needs to be specifically implemented for each type of test.
The remaining code corresponds to the saving of the vectors created into a struct. This
struct will be the one used for the plotting and the one that will be exported when the
user wants to save the results in an external file. This last part of the code Figure 3.20
(not framed), needs no modification.

%%%get the max value to prepare the info vectors

max=0;

for scenIdx=1:length(selected)
num=handles.test_info.stimuli(selected(scenIdx)).nStimuli;
if num > max

max=num;

end

end

$%%create the struct object
value='{}";
field='subjectID';

eval(['data subs.' field '=' field ';']);
field='resultsCode';

eval(['data_subs.' field '=' field ';']);
field='Surname';

eval(['data_subs.' field '=' field ';'1);
field='Name';

eval(['data_subs.' field '=' field ';']);
field='Gender';

eval(['data_subs.' field '=' field ';'1);
field='Country';

eval(['data_subs.' field '=' field ';']);
field='Experience';

eval(['data_subs.' field '=' field ';']);
field='Audio_Knowledge';
eval(['data_subs.' field '=' field ';'1);
field='Hearing Problems';

eval(['data _subs.' field '=' field ';'1);

for scenIdx=1:handles.test_info.totalScenarios
field=['Scen' num2str(scenIdx)];
eval(['data_subs.' field '=' field ';'1);
end

handles.data_subs=data_subs;

Figure 3.20: Code corresponding to the completion of the results struct creation

3.3.2 GUI_Analyse_TestName

This file is responsible for the analysis of the results window. Since tests can be very
different from each other, a new file has to be implemented for each new test. This part
will require medium-high programming skills in Matlab and specially GUIDE. The first
steps to follow are listed below:

34

3.3 Analyzing process file changes

1. Open Matlab
2. Set the working directory to your_path_to_scale/Scale/Scale_code_files/analysing

3. Type in the command prompt guide GUI_Analyse_DUMMY (the call to the file
has to be like this, be sure you do not call the file plus .m or .fig). Press enter
and wait for the figure window to open.

4. Having the window open, click on file and then on save and save the figure as
GUL Analyse_TestName (TestName refers to the name of the test procedure, in
this case has been saved as GULAnalysee MUSHRAMOD).

5. Close the figure window.

6. If everything was done right, two new files should have been created with the
names GUL Analyse_TestName.fig and GUIL_Analyse_TestName.m. Those files
refer to the figure file and the code file respectively. (Figure 3.21)

BT]

GUI_Analyse MUSHRA.m
*] GUI_Analyse_MUSHRAMOD.fig
GUI_Analyse_MUSHRAMOD.m

*TCUl_Analyse_SAQI.fig
GUI_Analyse_SAQl.m

Figure 3.21: Newly created analysis files

The window, which have been created by default, will look like in Figure 3.22 and in
most procedures, such as ours, will not require any changes in its layout but only in
the code.

The analysis window includes many elements and many functions. For most tests, the
rating include only values of one variable. Depending on the test, it may include one
or more values for each trial. In the case of the implemented test, MUSHRAMOD, we
will have to represent several values for each trial.

The snippet of code where this is done is presented in Figure 3.23. Actually only two
lines of code need to be added (the ones inside the red frame). In the dummy file,
those lines are already written but commented. For some procedures they cpuld even
work without needing any modification. Please note that this part of the code is found
inside the refresh_but_Callback function.

35

3.3 Analyzing process file changes

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

Setup, Conduction and Analysis of Listening Experiments

Results
AV —

P Sokct Al

Ciean Al

Socted axes2
EE—
Scenario

IERERiE

s|[e|[7]|

s [0][|[7e

13 |[e |[15 |[18

7 |18 |[19 |[20

2 [z |[2 |[2

25 Select All Options
Save Data e U

alldata

plot

Leycuu_vounu—i;

if or(or(strcmp(handles visualisationOption, 'single'),strcmp(handles.visualisationOption, 'combined')),length(handles.data_subs

Cancel

Figure 3.22: Analyse window in edition mode

for resIdx=1:length(handles.data_subs.subjectID)
for scenIdx=1:length(selected)

Refresh

temp=eval(['handles.data subs.Scen' num2str(selected(scenIldx)) '(' num2str(resIdx) ',:)']);

Subj_code=eval([

vec(legend_count, :

'handles.data_subs.resultsCode(' num2str(resIdx) ')']);

=[temp NaN(1l,max-length(temp))];

leg{legend_count}=[Subj_code{l} 'Scen’' num2str(selected(scenIdx))];
color(legend count,:)=handles.colors(resIdx,:);

plot_type(legend_count)=1;

plot_width(legend_count)= 1'

plot_marker{legend_count

o’

plot_style{legend count}= !
if length(handles data_: subs subjectID)
ol -

plo wndfh(legend count)=2;

color(legend_count, :)= handles colors(selected(scenldx),:);

end

legend_count=legend count+l;

end
end
end

if and(or(strcmp(handles.visualisationOption, 'average'),strcmp(handles.visualisationOption, 'combined')),length(handles.data_sul

for scenIdx=1:length(selected)

temp=eval(['nanmean(handles.data subs.Scen' num2str(selected(scenIdx)) ')']);

vec(legend_count,:
leg{legend_count}=

=[temp NaN(1l,max-length(temp))];
['Scen' num2str(selected(scenIdx))];

plot._type(legend_count)=2;

Figure 3.23: Code corresponding to the analysis window modification

36

Bibliography

[1]
2]

3]

[4]

H. Levitt, The City University of New York. PhD thesis, University of Wollongong, 1970.
E. Zwicker and H. Fastl, Psychoacoustics. Facts and Models. Springer, 2nd ed., 1999.

I.T.U., “Methods for the subjective assessment of small impairments in audio systems
including multichannel sound systems,” ITU-R BS, no. 1116-1, 1997.

I.T.U., “Method for the subjective assessment of intermediate quality level of coding
systems,” ITU-R, vol. BS, pp. 1534-2, 2014.

A. Lindau, V. Lepa, et al., “A spatial audio quality inventory (saqi),” Acta Acustica united
with Acustica, vol. 100, pp. 984-994, 2014.

M. Geier, J. Ahrens, and J. Spors, “The soundscape renderer: A unified spatial audio
reproduction framework for arbitrary rendering methods,” Proceedings of the 124th Con-
vention of the AES, no. 7330, 2008.

37

.1 Manual

.1 Manual

38

Scale

Setup, Conduction and Analysis of Listening experiments

User Documentation

Release: R16-0726 (third release)
July 3, 2016

Contents
1 Introduction 4
1.1 WhatisScale?. 4
1.2 Testsimplemented 4
1.2.1 Adaptive 4
1.2.2 Double-blind Triple-stimulus with Hidden Reference (ABC-HR) 5
1.23 ABX . . 6
1.24 MUSHRA 6
1.25 SAQI 6
2 Type of stimuli available 7
2.1 wavstimuli (WAV) 7
2.2 .wav combined with the SSR (BINAURAL_SSR) 8
23 Contact 8
3 Installing and starting the program 9
3.1 Running the program for the firsttime 9
3.2 Running an already installed version 10
3.3 Running an installed version from another computer 10
4 Running the program - Overview 11
5 Running the program - Create 12
5.1 General configuration window 12
5.2 Setlnstructions Window 12
5.3 Procedure specificoptions oL 13
5.3.1 Adaptive 13
532 SAQI 14
533 ABC-HR 15
534 ABXand MUSHRA 16
5.4 Stimuli configuration 17
541 WAV e 17
542 BINAURALSSR 18
5.4.3 Order and number of stimuli 19
544 Finish 20
545 Filescreated 20
6 Running the program - Perform 21
6.1 Testpreparation 21
6.2 Subjectlogin 22
6.3 Test Introduction Window 22
6.4 Scenario Selection Window 23
6.5 Trial Window 24
6.5.1 Adaptive Methods oL 24
6.52 ABC-HRmethod 25
6.53 ABXmethod 26

Product Version 3.0

Scale - User Documentation

6.54 MUSHRAMethod 27

6.5.5 SAQImethod 27

7 Running the program - Analyse 29
7.1 Analyse Window - Overview 29
7.2 Analyse Window - Adaptive, ABC-HR, ABX and MUHSRA 30

7.3 Analyse Window - SAQI L. 30
74 ExportedData 31
74.1 Commonfields 31

742 Adaptive 31

743 ABC-HR 33

744 ABX ..o 33

745 MUSHRA 33

74.6 SAQIL e 33

8 Closing Scale 34
9 The Sound Scape Renderer 35
9.1 Introduction 35
9.2 Sound Scape renderer and Scale 36

9.3 Imstallation 36

10 Jack Audio Connection Kit 36

Product Version 3.0 Scale - User Documentation

1 Introduction
1.1 What is Scale?

Scale i1s a software tool that covers the full chain of setup, conduction and analysis
of psychoacoustic experiments. It offers several testing procedures and the interaction
between researcher or subjects and the software is done via a graphical user interface
(GUI) and does not require any programming skills. Test setups or results can be easily
ported from one instance of the program to another. Thus everything is portable and
exchangeable between different computers and researchers. The first version of Scale
was presented at the DAGA Conference in 2013 in Merano [1], Italy and the second
version was presented at the DAGA Conference in 2015 in Niirmberg [2].

1.2 Tests implemented

The initial version of Scale included a selection of frequently used test procedures like
simple or transformed staircase adaptive procedures and double blind triple-stimulus
with hidden reference. A description of the latter can be found in [1]. In the second
version three additional procedures, ABX, MUSHRA and SAQI, are implemented. In
this third version, no more tests have been included however, the possibility of adding
new procedures haven been made possible.

1.2.1 Adaptive

Adaptive procedures aim to find a threshold of detection in the psychometric function of
a determined dimension of a sound. Stimuli are presented and varied in one dimension.
The amount of variation is increased or reduced depending on the preceding subject’s
responses and on the respective adaptation method. In Scale the adaptation is made
using different staircase methods like simple staircase (lup/lIdown) on the one hand,
and some transformed staircase methods such as lup/2down or 2up/1down as described
in [3] on the other hand. The threshold estimation can either vary depending on the
ending conditions of the trial (limited number of runs or reversals) or on how the average
is calculated. In this version the threshold estimation using QUEST [4] has been also
added.

The tests have to be combined with a paradigm. Scale provides different paradigms
which can be divided into two groups: n-AFC (n alternative forced choice) paradigms
and Yes/No paradigms. In the n-AFC paradigms » intervals (as used in [5]) are presented
to the subject. When 7 is equal to 2 the subject has to decide in which of the two intervals
a designated signal is present. When n is greater than 2 the subject has to decide in
which of the n intervals the presented stimulus is different. The sample assignation to
the intervals of the n-AFC paradigms is always automatically randomised. When using
a Yes/No paradigm only one interval that includes one or more sounds is presented to
the subject. The subject has to decide whether the signal occurs within the presented
interval or not.

Product Version 3.0 Scale - User Documentation

Setup, Conduction and Analysis of Listening Experiments

Which sound (A, B, C) is different from the others?

Figure 1: 3-AFC procedure trial window

1.2.2 Double-blind Triple-stimulus with Hidden Reference (ABC-HR)

Setup, Conduction and An ning Experiments

Please answer questions 1 and 2
To hear again the sounds in A, B or C, click the corresponding button.
Once finished click on continue

How would you describe the difference between A and B?

‘ [v

L L I [
r T G O e e e v O O G o | T L
Imperceptible Perceptible A
but not annoying annoying
annoying

— Queston

i
How would you describe the difference between A and C?
| [. »

r T
Imperceptible

Continue

Figure 2: Double-blind triple-stimulus with hidden reference procedure trial window [6]

This procedure has become a standard in psychoacoustics and is used to assess small
impairments between sound samples. In every trial, three stimuli are presented in three
intervals ("A", "B" and "C"). The stimulus in "A" is presented as the known reference,
the stimuli in "B" or "C" are randomly assigned, whereas one of them is a hidden refer-
ence and the other one is a sample which is varied in one determined dimension. After
listening to the stimuli the subject is asked to assess the impairments between "A" and
"B" and "A" and "C" using a rating scale. The rating is performed with a slider along a
continuous scale with anchors. The number of grades in the scale as well as the text in
the labels of every mark can be set. Thus all requirements to perform the test "Subjec-
tive Assessment of Small Impairments in Audio Systems Including Multichannel Sound
Systems" described in the recommendations of the ITU [6] are met (see Figure 2).

Product Version 3.0 Scale - User Documentation

1.2.3 ABX

The ABX test is a simplification of the ABC-HR test. In a trial of an ABX test, a subject
is presented with two stimuli which are A and B, followed by a third one called X. After
hearing A, B and X, the subject must select which of the stimuli in the intervals A or B
is the same as in interval X. In this case, as opposite to the ABC-HR, no rating is done.
In Scale, each scenario can contain many trials and for each trial, the position of the
reference stimuli in A and B is randomized. Figure 3 shows a trial window of the test.

Setup, Conduction and Analysis of Listening Experiments

Which sample (A or B) is the same as X?

Calibrate

Figure 3: Scale’s interface during an ABX test

1.2.4 MUSHRA

The aim of a multi-stimulus test with hidden reference and anchor (MUSHRA) test [7]
is to rate global differences between several audio stimuli. All stimuli are presented in a
single trial and have to be compared to a given reference. Each stimulus has a continous
scale (continous quality scale) which goes from 0 (bad) to 100 (excellent), as shown in
Figure 4. Reference and stimuli can be switched over instantly. The order of the stimuli
is randomized and every trial has to include a hidden reference and an anchor.

1.2.5 SAQI

The spatial audio quality inventory (SAQI) test [8] has been specifically designed for
the perceptual evaluation of virtual acoustic environments. In every trial a reference and
a stimulus are presented together with 48 verbal descriptors of perceptual qualities that
are assumed to be of practical relevance when comparing virtual auditory environments.
Each descriptor comprises a rating scale with a pair of opposed adjectives in its scale
ends. The subject’s task is to compare the stimulus to a given or inner reference and
give a rating for each perceptual quality.

Product Version 3.0 Scale - User Documentation

6 100
100 r -
Excelent
80
Good
60 r
Fair
40
Poor
20
Bad
0

Reference A B

c

Excellent (100%) >>> A - E Klingt genau wie die Referenz
Bad (0%) >>> A - E Klingt ganz anders als die Referenz

63

D

Bitte bewerte die Ahnlichkeit von A - E zur Referenz!

E

Calibrate

Figure 4: Scale’s interface during a MUSHRA test

0—0—0/.\0
scale

Reverberation level

02

=1

-1

Bless

rooms and churches.

Please rate every slider according to it's the definition

shorter

Perception of a strong reverberant sound field, caused by a high ratio of reflected to direct sound energy.
Leads to the impression of high diffusivity in case of stationary excitation (in the sense of a low D/R-ratio).
Example: The perceived intensity of reverberation difers significantly between rather small and very

Setup, Conduction and Analysis of Listening Experiments

i Timbre | | Tonalness | | Geometryt
Geometry2 | | Room | |Time behav. | Dynamics
Attacts | | General Other
Envelopment(oy
reverberation)
o
0
1
8 less pronounced
1
Finish

Figure 5: Scale’s interface during a SAQI test

2 Type of stimuli available

In this version of Scale two different types of stimuli are available. Those are .wav stim-
uli and .wav combined with SSR. Other types of stimuli can be added by modification

of the exsiting code files.

2.1 .wav stimuli (WAV)

The .wav stimuli are just audio files in the mentioned format which will be played by
Matlab using the function play of the audioplayer objects.

Product Version 3.0

Scale - User Documentation

2.2 .wav combined with the SSR (BINAURAL_SSR)

This type of stimuli are obtained by a combination of the rendering software Sound
Scape Renderer (SSR) [9] and the .wav playback function of Matlab. As shown in
Figure 6, Scale processes subject’s inputs and operates the SSR using its network inter-
face via TCP/IP protocol while the test is performed. The SSR runs in the background
generating stimuli with the combination of the incoming audio signal, the tracker data
and the corresponding head related impulse response (HRIR) or binaural room impulse
response (BRIR) set.

Control computer side User side
Tracking data
Sound Scape B gcaE .
Renderer
f Routed ?
: Digital |
R Qudio | ffee | Digital
% : Signal |1 ton ?
E: JACK Audio Sound j
Q Connection Interface
O Analog
: Digital Stimulus
Audio
Signal
Subject input
SCALE R R R LR R] R SCALE GU'

Figure 6: System architecture

2.3 Contact
For any further requests, technical support or bug reports feel free to contact:
e Arnau Vazquez-Giner, arnau.vazquez @ gmail.com

For software updates and further information visit:
http://www.audiogroup.web.th-koeln.de

Product Version 3.0 Scale - User Documentation

3 Installing and starting the program

GUL start

SCdile

Setup, Conduction and Analysis of Listening Experiments

Figure 7: Program loading window

In this chapter, the instructions to start the program will be given.

3.1 Running the program for the first time

1. Download the item Scale from the following link:

http://www.audiogroup.web.th-koeln.de
2. Extract the file Scale.zip to a directory of your choice.

3. Once extracted open Matlab and set the current Matlab folder to the directory
where you extracted the program (you should see a .m file with the name Scale
and the folders Scale_code_files and Scale_user_folder).

4. Type Scale on the command line and press enter.

5. Scale will open and the window presented in Figure 7 should appear. After this
point, you will not need to interact with Matlab anymore, but do not close it!

Product Version 3.0 Scale - User Documentation

10

3.2 Running an already installed version

To run an installed version of Scale follow the steps mentioned in the last section starting
at point 3.

3.3 Running an installed version from another computer

In case that you want to import your version of Scale, with your already configured test
or results, just copy the folder Scale into the new computer. All the implemented tests
and results will be automatically imported.

*Please note that if you are using the SSR stimuli type, you will need to adapt the .asd

files

Product Version 3.0 Scale - User Documentation

11

4 Running the program - Overview

Setup, Conduction and Analysis of Listening Experiments

Create Perform Analyse

snsee
rrrl
®® e e e FachhochschuleKaln

o2 e e Colgne Univesityof Agplied Sciances e —

Figure 8: Main window

When the program has finished loading the Main Program window appears. This
window appears also when the user at some point interrupts the program or decides to
go back. The window contains three buttons (Create, Perform and Analyse) referring
each to one of the basic features. When pressing any of the buttons, it will turn green
and one of the actions described in the next lines will take place.

Create: Select this option to create a new test.

Perform: Select this option to conduct a test. A list with the available tests in the
scale_program_folder\tests will appear. Select from the list the test to be per-
formed and press Continue.

Analyse: A list with the available tests in the scale_program_folder\tests will appear.
Select one test from the list and press the button Continue.
*If the test does not contain any result files, the action will be avoided!

Product Version 3.0 Scale - User Documentation

12

5 Running the program - Create

Results from two similar tests can be affected by several factors. On the one hand
there are the external factors like the devices used along the playback chain and their
settings or the characteristics of the experiment’s location. On the other hand there
are factors like e.g. the sequence of the presented stimuli or the information given to
subjects in advance of or during the test. Taking the latter into account, different settings
are adjustable in Scale. The settings are accessed in the creation module where different
configuration options are available depending on which type of procedure is selected.

In this section the steps to follow during the creation of a test are described.

5.1 General configuration window

Setup, Conduction and Analysis of Listening Experiments

Name example_test

Test type Adaptive

Stimuli Type WAV

Number of scenarios 4

Scenario order default

Cancel Next

Figure 9: General configuration window

Figure 9 shows the general configuration window.This window is the first one to
appear after selecting the option create in the main program window. Here the name
of the test, its procedure, the stimuli type, the number of scenarios and the presentation
order of them cab be set. The order of the scenarios can be set to default or random.
Default, means that scenario 1 will be performed in the first place, scenario 2 in the
second place and scenario n in the nth place.

5.2 Set Instructions Window

Scale allows the researcher to write the instructions and commands that are shown to
the subject during the test performance. The second window of the test configuration,
presented in Figure 10, is used for setting those instructions. On the one side, the in-
structions and/or information that the subject will see at the beginning of their test is
written on the panel Instructions on test start (upper panel). On the other side, the
instructions that appear when the subject performs a run are written on the panel In-
structions on trial window (lower panel). Although the instructions can be the same

Product Version 3.0 Scale - User Documentation

13

for each scenario, the process must be done separately for each trial by clicking on the
scenario buttons. To go faster, you can copy paste the text from one scenario to the
other.

Setup, Conduction and Analysis of Listening Experiments

Instructions on test start
Please write here the instructions that will appear once on the begginning of the test.

Hello and welcome to the test, please click next when you are ready.
If you have any doubts during the test, call the test administrator

Instructions on trial window-
Please write here the instructions that will appear in the trials. You can setthem different for each scenario (4 lines maxI)

Choose one of the options between A, B or C

Scenario

W=

Cancel Next

Figure 10: Set Instructions Window

5.3 Procedure specific options

In this window the specific configuration for each test type can be done. Depending on
the procedure, the window will have different parameters. In some cases no specific
parameters will be needed. Following, the window is presented and the options are
explained separately for each procedure.

5.3.1 Adaptive

For the configuration of the adaptive tests, the configuration window will look like in
Figure 11. The general configuration panel (upper panel) includes the parameters
which are common for all adaptive tests. Those are, the number of repetitions, the
paradigm and the adaption method.

Repetitions - Select the maximum number of times that a subject can perform a rep-
etition in one run.

Paradigm - Select the paradigm (2AFC, 3AFC or Yes/No)

Adataption method - Select the adaption method from one of the available (1upldown,
2upldown, lup2down and QUEST).

Depending on the adaption method chosen, you will have to configure one of the
panels below. For lupldown, 2upldown, lup2down the panel to configure is the lower-
left one (staircase). For QUEST it is the lower right one (QUEST).

Product Version 3.0 Scale - User Documentation

14

Setup, Conduction and Analysis of Listening Experiments

General configuration
Repetitions 0

Paradigm twoAFC

Adaptation method oneUp1Down

Please from the panels titled "Procedure specific" fill only the one corresponding to your test procedure

Procedure specific (simple staircase) Procedure specific (QUEST)
Max number of runs 10000 = tGuess

tGuessSD
Max number of reversals 10000
pThreshold

Activate half step width stepSize 1

range
nTrials 20

beta 35 delta 0.01 gamma Cale

Cancel Next

Figure 11: Specific options for the adaptive tests

The options for the starcaise methods are the following:

Number of runs - The trials end after a certain number of performed runs. If the
option is left to 10000, this ending criteria will be ignored.

Number of reversals - The trials end after a certain number of reversals (changes
from correct to false or false to correct subject decisions). If the option is left to
10000, this ending criteria will be ignored.

Activate half step width - If sclected, next played stimuli after a correct/false de-
cision will be the stimuli situated two positions above/below the preceding one.
After the first reversal, the steps will be reduced to only one position.

The options for the QUEST test are: tGuess, tGuessSD, pThreshold, stepSize,
range, nTrials, beta, delta and gamma. Those are described in the documentation
of the QUEST Toolbox in [4].

5.3.2 SAQI

For the configuration of the SAQI tests, the configuration window will look like in Fig-
ure 12. The window includes a panel with general procedure options (lower panel) and
the panels with the qualities that the researcher wants to get the ratings for.

Reference Type -Ina SAQI test, the reference can be a stimuli (external) or a concept
(internal). An internal reference example could be the sound of a guitar, so the
subject would have to compare some stimulus with the idea of the sound of a
guitar that he has in his memory instead of hearing a real guitar.

Product Version 3.0 Scale - User Documentation

15

S c a 1 e Setup, Conduction and Analysis of Listening Experiments

Please select the qualities under study by clicking in the checkboxes.
When you click in the checkbox an explanation of the quality is presented.

Difference Tonalness Geometry- Time behaviour Artifacts General
() Difference Tonalness Horizontal direction Pre-echoes Pitched artifact Clarity
Pitch Vertical Direction Post-echoes Impulsive Artifact Speech inteligibility
Timbre
N Doppler Effect Front-back position Temporal desintegrati... Noise-like artifact Naturalness
Tone color bright-dark
Distance Crispness Alien Source Presence
High-frequency tone color Room
i Depth Speed Ghost source Degree-of-likin;
Mid-frequency tone color Reverberation level P P 9 9
ion tit Width Sequence of events Distortion Other
Low-frequency tone color Reverberation time q
Height Responsiveness Tactile vibration
Shrapness Envelopment (by reverberation) 9! P
Externalization
Roughness Dynamics

Localizabilit
Comb fitter coloration Loudness id

i Spatial desintegration
Metallic tone color Dynamic range P gl

Dynamic compression effects

Select all
SAQI procedure
Please select the type of reference for the SAQI test
Reference Type Internal
Slider steps 3 v
Testlanguage english

Cancel Next

Figure 12: Specific options for the SAQI tests

Slider steps - In a SAQI test, every quality is evaluated using a slider. Here the num-
ber of steps of the sliders can be selected.

test language - Two languages are available for this type of test, those are English
and German. The names of the qualities and the descriptions of them appearing
during the test will be shown in the language selected.

To select a quaility just click on the button next to its name. You can select all of them
at once by clicking the select all button. You can also deselect qualities by clicking on
their buttons again. Clicking on the button of a quality will also display an explanation
of itself on the lower-right corner of the window.

5.3.3 ABC-HR

For the ABC-HR tests, the window will look like in Figure 13. Following each parame-
ter, button and element in the window is explained.

Instructions - Here can be written the instructions that the subject will see right at the
top of the question.

values... (input text field) - In those fields must be written the labels that the subject
will see under the slider and the scale picture when performing the rating. The
label in the left will correspond to the value 0 of the slider while the label in the
right will correspond to the max value of the slider.

Product Version 3.0 Scale - User Documentation

16

Setup, Conduction and Analysis of Listening Experiments

This is how will look like the window of the experiment. Set the number of values available in every question and write the
comment that will appear next to it. Write also the instructions of the question in the field Instructions.

Question_t
Instructions for question 1

Figure 13: Specific options for the ABC-HR tests

preview - A short preview of two seconds showing how will look like the question in
a real test situation. This option is interesting to see if the text in the labels will
be correctly placed in the real test.

scale picture (list) - This list let the researcher chose the image that will be displayed
between the slider and the labels. When a picture is selected it is automatically
displayed.

values (/ist) - Select the number of values that will appear in the rating scale. The
number of fields will be automatically modified, and so their positions under the
slider that will be always symmetrically distributed. The value in the left cor-
responds always to 0 while the value in the right, max, will correspond to the
number selected in values, n, minus / (max = n-1).

slider size (+/-) - Press this button to increment/decrement the width of the slider
thumb.

slider size (default) - Press this button to set the width of the slider thumb to a default
value depending on the number of values.
5.3.4 ABX and MUSHRA

For both ABX and MUSHRA tests, no specific options need to be configured. The win-
dow will look in both cases like in Figure 14.

Product Version 3.0 Scale - User Documentation

17

Setup, Conduction and Analysis of Listening Experiments

No extra parameters have to be configured in this test. Please click continue

Cancel Next

Figure 14: Specific options for the MUSHRA and ABX tests configuration

5.4 Stimuli configuration

In this version of Scale two types of stimuli are available, those are simple .wav samples
and .wav samples processed by the SSR. The process of adding the stimuli is different
for each type of stimuli, for this reason both procedures are explained separately. At the
end of the section, some hints about the number of stimuli to be added in each type of
test are given.

5.4.1 WAV

Figure 15 shows the window where the .wav samples are added. The first step is to add
the samples into the program folder so they are selectable for the test. This is done by
pressing the button add located inside the Available samples panel (right). When the
button is clicked a dialog window opens and the user can select the samples from the
directory. Samples can be selected one by one or several at the same time. This action
can be performed as many times as the user wants. Once the samples are loaded they
will appear in the list of the same panel.

The panel samples contains the slots where the samples can be added to the test. To
add or delete slots the buttons erase last slot or add new slot at the lower right corner
of the panel can be used. The lists of samples inside the slots, correspond to the list on
the panel of available samples. For each slot we will select one sample. This process
must be made for each scenario. To change the scenario, use the scenario buttons on the
lower-left panel Scenario. More information about the samples order in each type of
test is given at the end of this section.

Product Version 3.0 Scale - User Documentation

18

~jajaja

Erase last slot Add new slot

Cancel Next

Figure 15: .wav stimuli setting window

5.4.2 BINAURAL SSR

BINAURAL SSR refers to the type of stimuli that use the SSR renderer. Two parts are
involved in the addition of the stimuli in this case. The first part is the setting of the
filters and the second the setting of the .wayv file.

Figure 16 shows the window where the filters used for the stimuli are added. We will
add one filter for each stimulus. On the right of the window we can select from the
options available, the sample rate of the filter files and also the tracker that will be used.
On the main panel (left) the user will add the filters on the slots. Each slot corresponds
to one stimuli. The variable volume refers to the volume that the source will have in the
.asd file and x and y, the position on the scene. Since the SSR will work only in BRIR
mode, x and y will not affect the sound at all. To select the filters, we must click the
button select.

After clicking, a dialog window will open where the folder containing the BRIR files
can be selected. Once selected, the files will be selectable on each slot. To add or delete
slots, the buttons Erase last sample and Add sample can be used. More information
about the samples order in each type of test is given at the end of this section.

The second part of the stimuli configuration consists in adding the .wayv files. Only
one .way file will be added for each trial or scenario.

After adding the filters, and .asd file (scene file used by the SSR) is created. This
file contains the paths to the filters, for this reason, the filters should not be moved from
their folders after a test is created. If the test needs to be played in another computer,
the .asd file should be modified and the new paths should be added by hand. The .asd
files are placed in Scale/Scale_user_folder/Tests/<nameOfTheTest>.

Product Version 3.0 Scale - User Documentation

19

Setup, Conduction and Analysis of Listening Experiments

BRIRS'
Folder:

Select| Scene main volume: 0 Erase Last Sample Add Sample

Sample rate Trial presentations 0
ol x Vo x oy
48000

Tracker tvpe 2 (wl0l02nmy
B 3. 5.01_03way

Next
Cancel

Figure 16: Setting of the filters for the BINAURAL SSR stimuli type

Setup, Conduction and Analysis of Listening Experiments

Available Samples Samples

urused] .
0Os_19.wav. 1 ots_tomav 3

add

B

Cancel Next

Figure 17: Setting of the .wav files for the BINAURAL SSR stimuli type

5.4.3 Order and number of stimuli

Adaptive - An adaptive test can have a maximal of 50 stimuli. The first stimuli on the
first slot will correspond to the reference stimuli, the second will correspond to
sample most similar to the reference and so on. The last slot will correspond to
the sample with the biggest difference to the stimuli.

SAQI - If internal reference was selected, only one stimuli will be added for each trial.
If external reference was selected, the first slot will contain the reference and the
second the stimulus to be compared.

ABC-HR - In ABC-HR tests, each run compares two different stimuli. The slots will
represent those pairs. Slot 1 and 2 will be the first pair, slot 3 and 4 the second,
5 and 6 the third and so on. The presentation of the pairs will be randomized
differently for each subject, however, in the results analysis they will be presented
in the order they were added.

Product Version 3.0 Scale - User Documentation

20

ABX - In ABX tests, each run compares two different stimuli. The slots will represent
those pairs. Slot 1 and 2 will be the first pair, slot 3 and 4 the second, 5 and 6 the
third and so on. The presentation of the pairs will be randomized differently for
each subject, however, in the results analysis they will be presented in the order
they were added.

MUSHRA - In a MUSHRA test, a maximum of 15 stimuli can be presented in a single
trial. The reference will be placed in the first slot and the rest of the samples in
the remaining slots. The reference will be played when clicking on the reference
button during the trial, but will also be presented in one of the sliders like the rest
of the stimuli. The presentation of the stimuli will be randomized differently for
each subject, however, in the results analysis they will be presented in the order
they were added.

5.4.4 Finish

Once the stimuli have been added, the test configuration is finished and the user just
needs to click on the button next on the window presented in Figure 18. If the user
cancels the configuration of the test or closes Scale before this point, all the files created
during the steps mentioned in this section will be deleted.

Please click continue to complete the creation of the test.

Cancel Next

Figure 18: Completion of test creation

5.4.5 Files created

Once a test is configured, a folder with the name of the test is created inside Scale/Scale
_user_folder/Tests. This folder contains the struct test_info which contains the infor-
mation of the test, it also contains the .wav samples that will be played, the .asd files
in case of BINAURAL_SSR stimuli type and a folder called results containing the files
corresponding to the results. One result file is created each time a test is performed.

Product Version 3.0 Scale - User Documentation

21

6 Running the program - Perform

In this section the process of performing a test is explained step by step. Specific infor-
mation about how the stimuli are selected and presented and which are the tasks of the
subjects will be given for every type of test.

6.1 Test preparation

The first window to appear is dedicated to prepare the system for the test. If you are
using .wav stimuli type, nothing will be done at this point.

If you are using the SSR, Figure 19 will open. On this window, the processes of turning
on the SSR and achieving a connection are done. The user can also click on the option
SSR Visible if he wants to see the SSR user’s interface during the test. Sometimes it
is useful to leave it on to control that everything is working. In case no connection is
not achieved, try several times before restarting the program. Please note that the JACK
interface should be turned on before Matlab is started. In case it was not you will get an
error message. The first time that Scale is used on a new system, this window will ask
the sudo password, this is needed during the SSR starting process. The password will be
saved and it will not be asked again.

SSR connection

Tracker type

SSRvisible

Gancel Next

Figure 19: System preparation window

Product Version 3.0 Scale - User Documentation

22

6.2 Subject login

In order to perform a test, the subject must be logged in, to log in, introduce the user
data in the required fields on the window shown in Figure 20. If the data is correct, the
subject will be logged in and the test can be started by pressing the button next. In case
that the subject did already started the test, a new button will appear on the lower-left
corner called restart. If restart is pressed, the results of that subject will be deleted and
the test will be restarted. Please note that only a registered subject can perform a test. To
register a subject, use the button Register subject on the main program window shown
at the beggining of the manual (Figure 8.

Login
Fill the following fields and click login
Name Birthday: | january 3 1920 3

Figure 20: Subject login window

6.3 Test Introduction Window

Figure 21 shows the Introduction window of the test. As an example of how the in-
troduced text look like, the text written in the field general instructions of Figure 10 is
shown. In this window it would be useful a description of how the subject must interact
with the Scenario Selection window, see Figure 22, due to the fact that the scenario
order can be different from one test to another.

Product Version 3.0 Scale - User Documentation

23

EXAMPLE
Hello subject,
Thank you for helping make science go one step further with your participation in this test.

- If you misspell one word in the final, ready-for-publication manuscript, it will be your name.
- If everything seems to be going well, you have obviously overlooked something.
-An expert is one who knows more and more about less and less until he knows absolutely

everything about nothing.
- In theory there is no difference between theory and practice, but in practice there is.

Murphys Law

Continue

Figure 21: Test Introduction window

6.4 Scenario Selection Window

Figure 22 represents the Scenario Selection window. Subjects interact with this win-
dow at the beginning of the test and every time they complete a scenario.

In this example the test consists in six scenarios; tests with a different number of sce-
narios will make the window look different because a specific distribution of the buttons
in the window is performed in every case. The text written in the window explains to
the subject the meaning of the different buttons and what they have to do with them. To
perform a scenario, the subject must click next. The scenario that he is going to per-
form is the one that has its button number painted in green. Buttons corresponding to
completed scenarios are unenabled and the word "completed" is written in them. When
all scenarios are completed, button Next will change its text to Finish. The selection of
the next scenario is done automatically by Scale.

B GUI Tester Scenario

Setup, Conduction and Analysis of Listening Experiments

Those buttons represent the different scenarios that you have to complete in order to finish
this test.
If you have already completed any of the scenarios in the button will appear the word
"Completed". When a button appears in colour grey means that this will be the next
Scenario to complete.

Please just click "Next" to start the following scenario and click "Finish" when all scenarios
are completed.

| If you need to stop the test, please click the button "Interrupt"

1 2 3

4 5) 6 ‘

Interrupt Next

Figure 22: Scenario Selection window

Product Version 3.0 Scale - User Documentation

24

The button Interrupt stops the test. The information of the results until this point will
be saved and the test will be able to be continued later. It is only possible to interrupt a
test in the pause between scenarios. If a test is interrupted during the performance of an
scenario, the information will be saved only until the last completed scenario.

6.5 Trial Window

Each type of test uses a different trial window, following each procedure is individually
explained together with screenshots.

6.5.1 Adaptive Methods

In the adaptive methods stimuli that differ in a certain parameter are presented. The sub-
ject is aimed to find that difference. The decision can vary depending on the adaptation
method and on the paradigm; Scale offers three paradigms which are Yes/No, Two Al-
ternative Forced Choice (2AFC) and Three Alternative Forced Choice (3AFC). In
a Yes/No paradigm the subjects are asked directly if they could find that mentioned dif-
ference after hearing a single interval. In alternative forced choice paradigms they must
find the difference indirectly comparing two or more intervals. In all cases, when the
subject give a positive answer, next run should present a situation where the difference
is lesser. This process should be performed until the point where the subject reaches the
border between noticeable and unnoticeable. This point corresponds to the psychophys-
ical threshold. Depending on the adaption method, the stimuli used and other specific
settings, more or less runs will be needed to reach that threshold. Figure 23 presents an
example of the Yes/No and 3-AFC paradigms.

Do you hear any difference between samples A and B? Which sound (A, B, C) is different from the others?

NO A

Repeat

Figure 23: Adaptive Method Run windows

The sample to play in each run will depend on the answer given and on the adap-
tion method. Following, a list explaining the different adaption methods is given. For
a better understanding it will be assumed that the last presented stimuli was the one
corresponding to sample 7.

e oneUpl1Down - The first sample to be compared to the reference will be sample
max, that means the last sample of the samples vector. Reference will be always
sample 1. If the answer is correct, next sample will be n-1. If the answer is wrong
next sample will be sample n-1.

Product Version 3.0 Scale - User Documentation

25

e oneUp2Down - The first sample to be compared to the reference will be sample
max, that means the last sample of the samples vector. Reference will be always
sample 1. If both current and previous answer are correct, next sample will be
n-1. If current answer is correct but previous answer is wrong, next sample will
be n. If current answer is wrong next sample will be n+1.

o twoUplDown - The first sample to be compared to the reference will be sample
max, that means the last sample of the samples vector. Reference will be always
sample 1. If current and previous answer are wrong, next sample will be n+1. If
current answer is wrong but previous answer is correct, next sample will be n. If
current answer is correct next sample will be n-1.

e QUEST - Reference will be sample 1. The samples to play will be calculated
using the QUEST algorithm which varies in function of the parameters given by
the user, explained in [4].

Every time the subject gives an answer (positive/correct or negative/wrong) that is
different from the previous, a reversal occur. For a non QUEST test, there are three
ways to finish a scenario and two of them can be set by the researcher in the ending
criterion options:

e Number of runs - The scenario will end after a certain number of runs.

e Number of reversals - The scenario will end after a certain number of reversals
occur.

e Sample index above the limits - The scenario will end when the samples having
indexes O or n+1 are required. This means that the subject has not only achieved
the maximum or the minimum, but surpased it. This would mean that the thresh-
old is out of range.

6.5.2 ABC-HR method

ABC-HR follow the "double blind principle". Those tests are aimed to compare two
samples: the original sample, that works as a reference, and a modified sample. To
make this comparison, the subject hears three intervals (A,B and C). Interval A contains
always the reference. Intervals B and C contain one the reference and the other one
the modified. Nor the researcher or the subject will know which one is each. This
assignation is always randomly made for every run.

Subject hears first interval A followed by interval B and then interval A followed by
interval C. After hearing them for the first time, he can listen them again an unlimited
number of times just clicking buttons A, B or C. After hearing the intervals, the two
questions must be answered. First question should be "How would you evaluate the
difference between samples A and B?" and second question,"How would you evaluate
the difference between samples A and C?". The answer is performed positioning the
slider thumb in a certain place in the horizontal scroll. After the user has clicked at least
once in every slider the button Continue will set to enable and once pressed the run end.
The recommendation ITU-R BS.1116 for the evaluation of small impairment in coded

Product Version 3.0 Scale - User Documentation

26

ning Experiments

Please answer questions 1 and 2
To hear again the sounds in A, B or C, click the corresponding button.
Once finished click on continue

RPN v

[— Questi
How would you describe the difference between A and 57
‘ 8
1 : I . /
L) T T R e i O N i T G N G N G N 2R R T T 1
Imperceptible Perceptible Slightly ‘Annoying Very
ot ot annoying amoyng
amnoying
— Queston
How would you describe the difference between A and C?
| »
I I I q
L) T T S A e A GBE Gl T M S UE NF SR N N e S M R T | T T 1
ipercestive e siarty aoyng very
aanoying amnoying
amnoyng

‘ Continue ‘

Figure 24: ABC-HR Method Run window

audio signals [6] uses this method under certain conditions. Figure 24 shows an example
of a run in an ABC-HR test using the mentioned recommendation.

6.5.3 ABX method

The ABX test is a simplification of the ABC-HR test. In a trial of an ABX test, a subject
is presented with two intervals, which are A and B, followed by a third one called X.
After hearing A, B and X, the subject must select which of the stimuli in A and B
resembles to X and click on it. In this case, as opposite to the ABC-HR, no rating is
done. In Scale, each scenario can contain many runs and for each run, the position of
the reference stimuli in A and B is randomized. Figure 3 shows a trial window of the
test.

Setup, Conduction and Analysis of Listening Experiments

Which sample (A or B) is the same as X?

Calibrate

Figure 25: ABX Method Run window

Product Version 3.0 Scale - User Documentation

27

6.5.4 MUSHRA Method

This procedure is aimed to compare multiple samples with medium or big impairments
between them. The advantage of this method is that it enables to compare multiple sam-
ples at the same time having also a reference and an anchor. The reference is presented
two times, one as a known reference and the other as a hidden reference. The anchor
must be also hidden. The rating is performed with vertical sliders placed on the top of
every stimuli button.

Bitte bewerte die Ahnlichkeit von A - E zur

Excellent (100%) >>> A - E klingt genau wie die Referenz
Bad (0%) >>> A - E klingt ganz anders als die Referenz

65 100 38 63 85

L R I | (Calibrate

Fair

Reference A F c D E
Figure 26: MUSHRA Method Run Window

Figure 26 shows a run window of a MUSHRA test, the buttons containing the letters
A to O represent the different stimuli and the button Reference the reference stimuli.
When the subject clicks on one of the buttons, the stimuli contained in that letter will
be played. At the right side of the screen there are some options related to the playback
such as Pause, Resume, Stop and Loop. Also a slider shows the playback instant. On
the left side of the window the rating scale is presented and also the rating grades. All
sliders have anchors on their side every ten points and at the top a text field show the
position of the slider thumb. After the user has clicked at least once in every slider the
button Continue will set to enable and once pressed the run end.

6.5.5 SAQI method

The spatial audio quality inventory (SAQI) [8] test has been specifically designed for
the perceptual evaluation of virtual acoustic environments. In every trial a reference and
a stimulus are presented together with 48 verbal descriptors of perceptual qualities that
are assumed to be of practical relevance when comparing virtual auditory environments.
Each descriptor comprises a rating scale with a pair of opposed adjectives in its scale
ends. The task of the subject is to compare the stimulus to a given or inner reference
and give a rating for each perceptual quality.

Figure 27 shows a run window of a SAQI test. The test window may differ depending
on which qualities were selected by the researcher for evaluation. On the upper-right

Product Version 3.0 Scale - User Documentation

28

Reverberstion level Reverbration t ime. Envelopmentioy

0.2 02 0
-1 1 1

=1 1 1

nt sound field, caused by a high ratio of reflected to direct sound energy.
difusivity in case of stationary excitation (in the sense of a low D/R-atio).
tensity of reverberation differs significantly between rather small and very large spaces, such as living

Figure 27: SAQI Method Run window

corner, the panel Categories contains a button for each quality category. When pressing
on a button, the test window will show all the sliders corresponding to the qualities of
the selected category. When the test starts, the category Difference, which contains a
single slider, is shown. At this point, the other buttons are blocked. This is made on
purpose because if no difference is found, all the qualities will be automatically set to 0
and the run will be finished by pressing the button Finish (bottom-right corner). In case
the slider of the Difference quality is moved, the rest of the Category panel buttons will
become active.

When clicking on a slider, a description of the qualitiy corresponding to it will be
shown at the bottom of the window. In order to swhich from reference to tested sample
click on the buttons A or B.The stimuli are looped, so the subject hears the sound con-
tinously, if the sound needs to be stopped, this is done by clicking on the active sample
button A or B, in green. If the test uses an internal reference, then only one button is
present.

Product Version 3.0 Scale - User Documentation

29

7 Running the program - Analyse

Results obtained in tests are analysed at the researcher’s discretion. Hence, the data can
be represented in many different ways. In Scale some of the most common methods of
representation have been implemented in order to facilitate this process. The analysis
module offers a graphical representation of the collected data and results can be exported
to MATLAB Structs (.mat) and MATLAB Figures (.fig).

7.1 Analyse Window - Overview

The analyse of the results is made through the window represented in Figure 28. This
window can vary on the test procedure, but most of the settings are common for all of
them.

Select Al

Figure 28: Example of the analyse window

The common options, Figure 29, include the Results panel and the Scenario panel.
In the results panel, the available results sets from a certain test are presented as a list.
To select a result set just click on it and then on the + button, you can add more results
by repeating the process or select all of them by clicking select all. To not include a
single result set, select it on the Selected panel and cilck the - button, to deselect all
result sets click on Clean all.

In the panel Scenario the scenarios to be seen can be selected. Each scenario has a
color assigned and this color will correspond to the color of the line representing the
data of it in the graphic.

The panel Save Data contains two buttons. If the user click on plot the graphic can be
saved as a Matlab figure, if all data is clicked, the results will be exported in a Matlab
struct file which can be used outside Scale.

Product Version 3.0 Scale - User Documentation

30

Results

Available —

+ | - Select All

Clean All

Selected p—

[ArVa1086251136abx.mat |

1 of 1 results selected

Scenario

] |

| Select All

Save Data

all data

plot

Figure 29: Analyse window common options

7.2 Analyse Window - Adaptive, ABC-HR, ABX and MUHSRA

The window to observe the results is common for the Adaptive, ABC-HR, ABX and
MUHSRA procedures, see Figure 30. In the panel options three options can be selected.

Single - For every subject and for every scenario a line will be drawn with his obtained
value/s.

Average - The values obtained on the all the result sets are averaged and a single
value/s are presented.

Combined - Both information shown in Single and Average options is plotted.

7.3 Analyse Window - SAQI

The options panel include several buttons, each one corresponding to a category of
qualities, and a list of the visualization possibilities (single, average and combined), see
Figure 31. When observing the categories, please take in account that only 4 categories
can be plotted simultaneously.

Single - For every subject and for every scenario a line will be drawn with his obtained
value/s.

Average - the values obtained on the all the results sets are averaged and a single
value/s are presented.

Combined - Both information shown in Single and Average options is plotted.

Product Version 3.0 Scale - User Documentation

31

Select Al

Exit Refresh

Figure 30: Analyse window for Adaptive, ABC-HR, ABX and MUHSRA procedures

7.4 Exported Data

In this section the exportation of the data will be explained. The results data is exported
in a single struct called data_subs. This struct has several fields which some of them
are common for all type of tests. The common data will be now explained and the test
specific results will be later explained specifically for each test type.

7.4.1 Common fields

Figure 32 shows all the fields of the results struct. The fields inside the red frame, are
common for all type of tests, each field is a cell array. The cell arrays have as many
positions as result sets. In the case of the figure, there are two sets of results, for this
reason, the length of the cell arrays is 2. The not common part of the results will be
saved in the fields scen<number of scene>. The contain or the data class of this scene
structs will be following explained separately for each test.

7.4.2 Adaptive

For the adaptive tests, every trial includes two different values. The first one is the
threshold value Scen<trial_number>_tValue which in this case is the value of the last
stimuli played and then a vector with all the stimuli played in the trial saved in Scen<trial_number>
_runValues. This vector has a fixed length of 100, and if the trial was performed in less
than 100 runs, the extra positions will be filled with NaN. In the figure, the struct con-
tains only one set of results, if it contained more sets of results, Scen<trial_number>_tValue
and Scen<trial_number>_runValues would be a vector and a vector of vectors with a
length equal to the number of results. This is shown in Figure 33.

*If the staircase method QUEST is used, two more fields are added which are the
Scen<trial_number>_st_dev containing the standard deviation in each trial and the
Scen<trial_number>_QuestStruct containing the QUEST information struct in each
trial. This is shown in Figure 34.

Product Version 3.0 Scale - User Documentation

Results

Avalablo S
Biet 163250273075 -
IHul163250212555AQret 25 Scen3 || 2
GoMo0456110211338A0r0 Scen?
JoAr128603031349SAGr0s
MEb1070260117328A0r08 | | 2 '
> —
o || solatm)| 1S 0 __ S
.
Goan Al 1 4
500100 m—
- T | 05 2
aGo Adro
B0Ba0B7911021512SAGr: . .
BBa0s5e12021 TopEA Trwed Do b G W T SohA R
3 3
501 13 rosuts solected
2 2
Scenario
1 '
|) _—
=
s [[e|[7|[[e 0 " o
El il
2 2
3 3
Tonhaligren Tombthalstae Nachhaldauer Nachhalun
Solect Al Ontions
Parameters under observaton
Save Data
Unterschiod || Kangtarbe || Tonaitat | Geometne Gaame(mzl Raum | Aver.
aldata
Zotvernaten| | Dynamic || Anefakte |[Atgemeines | | Sonstges
Graphic) . Hoomehnes) (Scnetoes.
Exit Refresh

Figure 31: Analyse window common options for SAQI procedure

e 006 Variable Editor - data_subs |
I x a ~ 3 R L 4 f8 Stack:| Base 3 [2D select data to plot - (B o8 & ! !
£l data_subs <1x1 struct>
Field & Value Min Max
}| subjectID <2x1 cell>
}| resultsCode <2x1 cell>
£} Surname <2x1 cell>
1k} Name <2x1 cell>
}| Gender <2x1 cell>
}| Country <2x1 cell>
}| Experience <2x1 cell>
}| Audio_Knowledge <2x1 cell>
}| Hearing_Problems <2x1 cell>
1 Scenl <2x7 double> NaN NaN
1 Scen2 <2x8 double> NaN NaN
Figure 32: Exported results struct
LI AUUIU_NIuwieuye <iXlicen>
{}| Hearing_Problems <1x1 cell>
Scenl_tValue 11 11 11
1 Scen2_tValue 10 10 10

1 Scenl_runValues
& Scen2_runValues

<1x100 double>
<1x100 double>

NaN

NaN

Figure 33: Exported results struct

- Scenl_tValue

- Scen2_tValue

- Scenl_runValues

- Scen2_runValues

- Scenl_stDevValue
- Scen2_stDevValue
Scenl_QuestStruct
| Scen2_QuestStruct

Sl

0

10

<1x100 double>
<1x100 double>
0

0.7921

<1x1 struct>
<1x1 struct>

10
NaN
NaN

0.7921

0

10
NaN
NaN

0
0.7921

Figure 34: Exported results struct

Product Version 3.0

Scale - User Documentation

33

7.4.3 ABC-HR

In an ABC-HR test every trial includes a single vector of values called Scen<trial_number>.
Those values correspond each to the comparison between a pair of stimuli. For example,
the first position of the vector Scenl will show the comparison between stimuli added

in slot 1 and stimuli in slot 2. The second position, will show the comparison between
stimuli in slot 3 and slot 4 and so on. Please note that during the test, the presentation

of the stimuli pairs is randomized but here is ordered again. The value itself can have a
range from -nValues to +nValues. The negativity or positivity of the value depends on
the answer of the subject. For example if C was the same as A and the subject rated
"very different" to the question asking the similiraty between A and C, the value would

be equal to -nValues.

7.4.4 ABX

In an ABX test every trial includes a single vector of values called Scen<trial_number>.
Those values correspond each to the comparison between a pair of stimuli. For example,
the first position of the vector Scenl will show the comparison between stimuli added
in slot 1 and stimuli in slot 2. The second position, will show the comparison between
stimuli in slot 3 and slot 4 and so on. Please note that during the test, the presentation of
the stimuli pairs is randomized but here is ordered again. The value itself can be 1 or 0.
If it is 1 it means that the subject guessed correctly (the reference was pointed correctly
to A or B), if it is O it means that the subject guessed wrong.

7.4.5 MUSHRA

In a MUSHRA test every trial includes a single vector of values called Scen<trial_number>.
The vector has as many positions as stimuli presented in the trial. The order of the rat-
ings is not related to the order that the stimuli were presented in the trial window because
they are randomised for every subject. The order of the results corresponds to the order
that the stimuli were added.

7.4.6 SAQI

In a SAQI test every trial includes a single vector of values called Scen<trial_number>.
The vector has 48 positions and the rating for each quality is written in this vector. Since
the user can select qualities to not be asked, the positions of the not asked qualities
will not be taken in account. Figure 35 show the correspondence between the vector
positions and the quality names.

Product Version 3.0 Scale - User Documentation

34

1 Difference

2 Tone color bright-dark

3 High-frequency tone color
4 Mid-frequency tone color
5 Low-frequency tone color
6 Sharpness

7 Roughness

8 Comb filter coloration

9 Metallic tone color

10 Tonalness

11 Pitch

12 Doppler effect

13 Horizontal direction

14 Vertical direction

15 Front-back position

16 Distance

17 Depth

18 Width

19 Height

20 Externalisation

21 Localizability

22 Spatial disintegration
23 Reverberation level

24 Reverberation time

25 Envelopment(by reverberation)
26 Pre-echoes

27 Post-echoes

28 Temporal disintegration
29 Crispness

30 Speed

31 Sequence of events
32 Responsiveness

33 Loudness

34 Dynamic range

35 Dynamic compression effects
36 Pitched artifact

37 Impulsive artifact

38 Noise-like Artifact

39 Alien source

40 Ghost source

41 Distortion

42 Tactile vibration

43 Clarity

44 Speech inteligibility

45 Naturalness

46 Presence

47 Degree-of-liking

48 Other

Figure 35: List of SAQI qualities

Product Version 3.0

Scale - User Documentation

35

8 Closing Scale

The correct way to close Scale is by clicking Exit button in the Main program window.
The Main program window is accessed when a task is completed, for example when
a test is created, or when some actions are cancelled, for example when a test is inter-
rupted. In order to avoid errors and to provide a good functionality the close button in
the upper-right corner of the windows is under normal conditions deactivated; it would
be a problem for example when a subject accidentally closed a test. For this reason a
little "trick" has been implemented. In the bottom-left corner there is a little input text
field. When the number 22 is written in this field and the close button is pressed the
program can be closed.

After hearing the sounds, click on the button of the one that you think that it is different.
If you don't hear any difference just guess
When finished, answer the questions.

How sure are you about your answer?

How did you perceive the loudness of the samples

Figure 36: Closing input text field

Product Version 3.0 Scale - User Documentation

36

9 The Sound Scape Renderer

9.1 Introduction

The SoundScape Renderer (SSR) [9] is a tool for realtime spatial audio reproduction,
which includes several rendering methods. It is free open source software running on
UNIX-based systems and using the JACK [10] audio framework. The SSR can be con-
trolled either using a graphical user interface (GUI) or a TCP/IP network interface.
Sound source positions and other attributes represented in a spatial audio scene, as
shown in Figure 37, can be imported or exported using audio scene descritpion files
(.asd) [11].

__///___ 6’.;

Figure 37: SSR user interface

9.2 Sound Scape renderer and Scale

As shown in Figure 38, Scale processes subject’s inputs and operates the SSR send-
ing XML messages through its network interface via TCP/IP protocol while the test is
performed. The SSR runs in the background generating stimuli with the combination
of the incoming audio signal, the tracker data and the corresponding head related im-
pulse response (HRIR) or binaural room impulse response (BRIR) set. The extension
Scale-SSR uses the BRIR mode because it allows the use of arbitrary impulse response
datasets in the same scene.

9.3 Installation

The SSR needs to be installed in the system in order to be used. Please follow the next
steps to complete the installation:

1. Click the link user manual on the site http://www.spatialaudio.net/.

Product Version 3.0 Scale - User Documentation

37

Control computer side User side
Tracking data
Sound Scape B gdale .
Renderer :
? Routed *
: Digital |
38 fudio | || [Digital
% : Signal |1 ton 8
E: JACK Audio Sound T
G Connection Interface
&) N Analog
. Digital Stimulus
Audio
Signal
Subject input
SCALE 5t A SCALE GUI

Figure 38: SSR System architecture

2. In the user manual there are the instructions about downloading and installing the
SSR.

3. The Scale-SSR extension has been developed using the version 0.4.2 of the SSR.
Please note that while older versions should not have any problem, earlier versions
could.

10 Jack Audio Connection Kit

The SSR uses the Jack Audio Connection Kit to make the routing of the sound and
for this reason it needs to be installed on the system. Remember that the Jack audio
connection must be running before you start Matlab. If it is not the case, it will not be
detected. To install the software go to the site http://www.jackaudio.org/ downloads/
and download the Jack1 for OSX version 0.124.1. or greater.

Product Version 3.0 Scale - User Documentation

38

References

(1]

(2]

(3]
(4]

(5]
[6]

[7]

[8]

[9]

A. Vazquez, “Scale, a software tool for listening experiments,” Proceedings of the DAGA,
2013.

A. Vazquez, “Scale,conducting psychoacoustic experiments with dynamic binaural syn-
thesis,” Proceedings of the DAGA, 2015.

H. Levitt, The City University of New York. PhD thesis, University of Wollongong, 1970.

A. Watson and D. Pelli, “Quest: a bayesian adaptive psychometric method,” Perceptive
Psychophysics, vol. 33(2), pp. 113-120, 1983.

E. Zwicker and H. Fastl, Psychoacoustics. Facts and Models. Springer, 2nd ed., 1999.

L.T.U., “Methods for the subjective assessment of small impairments in audio systems in-
cluding multichannel sound systems,” ITU-R BS, no. 1116-1, 1997.

LT.U., “Method for the subjective assessment of intermediate quality level of coding sys-
tems,” ITU-R, vol. BS, pp. 1534-2, 2014.

A. Lindau, V. Lepa, et al., “A spatial audio quality inventory (saqi),” Acta Acustica united
with Acustica, vol. 100, pp. 984-994, 2014.

M. Geier, J. Ahrens, and J. Spors, “The soundscape renderer: A unified spatial audio repro-
duction framework for arbitrary rendering methods,” Proceedings of the 124th Convention
of the AES, no. 7330, 2008.

P. Davis et al., “Jack audio connection kit.” http//jackaudio.org/, October 2013. Version
1.9.

M. Geier, J. Ahrens, and S. Spors, “Asdf:ein xml format zur beschreibung von virtuellen
3d-audioszenen,” Proceedings of the DAGA, 2008.

Product Version 3.0 Scale - User Documentation

	Introduction
	What is Scale?
	Tests implemented
	Adaptive
	Double-blind Triple-stimulus with Hidden Reference (ABC-HR)
	ABX
	MUSHRA
	SAQI

	Type of stimuli available
	.wav stimuli (WAV)
	.wav combined with the SSR (BINAURAL_SSR)

	Structure of the program
	General
	Start
	Config
	Testing
	Analysing

	Procedure Implementation
	Configuration process file changes
	TestTypeEnum
	Common_create_test
	GUI_Config_3_TestName

	Testing process file changes
	Common_create_results
	GUI_Tester_TestName

	Analyzing process file changes
	analysing_generate_struct_TestName
	GUI_Analyse_TestName

	Bibliography
	Appendix A

